Skip to main content

Organotin Contamination in Deep Sea Environments

  • Chapter
Ecotoxicology of Antifouling Biocides

Deep sea environments are divided into the bathyal zone (200–2,000 m), the abyssal (2,000–6,000 m) and the hadal zone (over 6,000 m). These zones cover the largest part of the ocean biome (more than 80%). Until now, it was considered that these zones were deserts because sunlight could not reach to such depths and pressures were too high for biota. Advances in deep sea submersibles and image capturing technologies are now increasing the opportunities for marine biologists to observe and uncover the mysteries of the deep ocean realm. Remotely operated vehicles (ROVs) have been used underwater since the 1950s. ROVs are basically unmanned submarine robots with umbilical cables used to transmit data between the vehicle and researcher for remote operation in areas where diving is constrained by physical hazards. ROVs are often fitted with video, cameras, mechanical tools for specimen retrieval and measurements. Subsequently, manned deep sea submersi-bles have been developed and research has progressed. Although the deep sea is in total darkness, is extremely cold, and subjection to great pressure, the marked development of bathyscaphes has revealed the presence of many deep-sea organisms such as bivalves and gastropods in water depths of 3,000 m and more, and has permitted the collection of sediment and marine organisms (e.g. Endo et al. 1999; Okutani et al. 2002; Okutani and Iwasaki 2003).

The contamination of deep-sea ecosystems by man-made chemicals has also been clarified by progress in diving technology. Organochlorine insecticide residues were measured in the livers of Antimore rostrata, a deep sea fish collected from 2,500 m in 1972, 1973, and 1974 off the east coast of the United States (Berber and Warlen 1979). Subsequently, metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and chlorinated pesticides in were determined in tilefish (Lopholatilus chamaeleonticeps) collected from Lydonia Canyon (on the Georges Bank) in 1981–1982 (Steimle et al. 1990). Persistent orga-nochlorines such as PCBs, DDT and its metabolites (DDTs), chlordane compounds (CHLs), and hexachlorobenzene (HCH) were detected in deep-sea organisms from a water depth of 180–980 m in Suruga Bay (Lee et al. 1997), whilst PCBs have also been detected (22 mg kg−1) along with DDTs (13 mg kg−1) in amphipods collected from a water depth of 2,075 m in the Arctic Ocean (Hargrave et al. 1992). More recently, detection of persistent organic pollutants has been reported in many kind of samples from various water depths (e.g., Takahashi et al. 1997a). It has thus been concluded that persistent organic pollutants (POPs) and various other contaminants can be transferred to deep-sea areas where they may be accumulated by deep-sea organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berber R T, Warlen S M (1979) Organochlorine insecticide residues in deep sea fish from 2500 m in the Atlantic Ocean. Environ Sci Technol 13:1146–1148

    Article  Google Scholar 

  • Borghi V, Porte C (2002) Organotin pollution in deep-Sea fish from the Northwestern Mediterranean. Environ Sci Technol 36: 4224–4228

    Article  CAS  Google Scholar 

  • Broman D, Naf C, Rolff C et al. (1992) Using ratios of stable nitrogen isotopes to estimated bioaccumulation and flux of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ Toxicol Chem 11:331–34

    Article  CAS  Google Scholar 

  • De Brito A P X, Takahashi S, Ueno D et al. (2002) Organochlorine and butyltin residues in deep-sea organisms collected from the western North Pacific, off Tohoku, Japan. Mar Pollut Bull 45:348–361

    Article  Google Scholar 

  • Dowson P H, Bubb J M, Williams T P et al. (1993) Degradation of tributyltin in freshwater and estuarine marina sediments. Water Sci Technol 28:133–137

    CAS  Google Scholar 

  • Endo H, Iwasaki N, Machida Y et al. (1999) Preliminary research on the deep-sea demersal fishes and crustaceans off Cape Muroto using deep-tow camera. JAMSTEC J Deep Sea Res 14:411–420

    Google Scholar 

  • Gibbs P E, Bryan G W (1986) Reproductive failure in populations of the dog-whelk,Nucella lapilluscaused by imposex induced by tributyltin from antifouling paints. J Mar Biol Assoc UK 66:767–777

    CAS  Google Scholar 

  • Gibbs P E, Spencer B E, Pascoe P L (1991) The American oyster drill,Urosalpinx cunerea(gastropoda): evidence of decline in an imposex – affected population (R. Blackwater, Essex). J Mar Biol Assoc UK 71:827–838

    Article  Google Scholar 

  • Hargrave B T, Harding G C, Vass W P et al. (1992) Organochlorine pesticides and polychlorinated biphenyls in the Arctic Ocean food web. Arch Environ Contam Toxicol 22:41–54

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Yamamoto Y et al.(1998) Organotin compounds in water, sediment and biological samples from the Port of Osaka, Japan. Arch Environ Contam Toxicol 35:558–564

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Kawai S (1999) Temporal trends of organotin compounds in the aquatic environment of the Port of Osaka, Japan. Environ Pollut 105:1–7

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Kawai S (2000) Accumulation of butyltin and phenyltin compounds in various fish species. Arch Environ Contam Toxicol 39:13–19

    Article  CAS  Google Scholar 

  • Harino H, Iwasaki N, Arai T et al. (2005) Accumulation of organotin compounds in the deep – sea environment of Nankai Trough, Japan. Arch Environ Contam Technol 49:1–8.

    Article  CAS  Google Scholar 

  • Ikeda K, Minami T, Yamada H et al. (2002) Bioaccumulation of organotin compounds through the food web developed in the deep water of the Japan Sea. J Environ Chem 12:105–114 (in Japanese)

    CAS  Google Scholar 

  • Iwai M, Fujiwara O, Momma H et al. (2004) Holocene seismoturbidites from the Tosa bay Trough a landward slope basin of Nankai Trough off Muroto: Core KR9750P1. Mem Geol Soc Japan 58:137–152 (in Japanese)

    Google Scholar 

  • Kono K, Minami T, Yamada H et al. (2004) Bioaccumulation of organotin compounds through the food web in deep water of the Japan Sea. In: Shibata K and Senda T (eds) Proceedings of International Symposium on antifouling paint and marine environment. Tokyo, pp. 45–51

    Google Scholar 

  • Le L T H, Takahashi S, Saeki K et al. (1999) High percentage of butyltin residues in total tin in the livers of cetaceans from Japanese coastal waters. Environ Sci Technol 33:1781–1786

    Article  CAS  Google Scholar 

  • Lee J S, Tanabe S, Takemoto N et al. (1997) Organochlorine residues in deep-sea organisms from Suruga Bay, Japan. Mar Pollut Bull 34:250–258

    Article  CAS  Google Scholar 

  • Michel P, Averty B (1999) Distribution and fate of tributyltin in surface and deep waters of the northwestern Mediterranean. Environ Sci Technol 33:2524–2528

    Article  CAS  Google Scholar 

  • Ministry of the Environment, Japan (2003) Chemicals in the Environment, 247–265 (in Japanese)

    Google Scholar 

  • Ohji M, Arai T, Miyazaki N (2002) Effects of tributyltin exposure in the embryonic stage on sex ratio and survival rate in the caprellid amphipodCaprella danilevskii.. Mar Ecol Prog Ser 235:171–176

    Article  CAS  Google Scholar 

  • Okutani T, Iwasaki N (2003) Noteworthy abyssal molluscs (excluding vesicomyid bivalves) collected from the Nankai Trough off Shikoku by the ROV Kaiko of the Japan Marine Science & Technology Center. VENUS 62:1–10

    Google Scholar 

  • Okutani T, Kojima S, Iwasaki N (2002) New and known vesicomyid bivalves recently collected from the western and central Nankai Trough off Shikoku and Honshu, by deep sea research systems of Japan Marine Science and Technology Center. VENUS 61:129–140

    Google Scholar 

  • Steimle F W, Zdanowicz V, Gadbois D (1990) Metals and organic contaminants in Northwest Atlantic deep-sea tilefish tissues. Mar Pollut Bull 21:530–535

    Article  CAS  Google Scholar 

  • Takahashi S, Tanabe S, Takemoto N et al. (1997a) Organochlorine residues in deep-sea organisms from Suruga Bay, Japan. Mar Pollut Bull 34:250–258

    Article  Google Scholar 

  • Takahashi S, Tanabe S, Kubodera T (1997b) Butyltin residues in deep-sea organisms collected from Suruga Bay, Japan. Environ Sci Technol 31:3103–3109

    Article  CAS  Google Scholar 

  • Takahashi S, Tanabe S, Kawaguchi K (2000) Organochlorine and butyltin residues in mesopelagic Myctophid fishes form the Western North Pacific. Environ Sci Technol 34:5129–136

    Article  CAS  Google Scholar 

  • Takahashi S, Hayashi S, Kasai R et al. (2001) Contamination of deep-sea organisms from Tosa Bay, Japan by organochlorine and butyltin compounds. Nat Sci Mus Monogr 20:363–380

    Google Scholar 

  • Yamada H, Takayanagi K (1992) Bioconcentration and elimination of bis(tributyltin)oxide (TBTO) and triphenyltin chloride (TPTC) in several marine fish species. Water Res 26:1589–1595

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Harino, H., Arai, T., Ohji, M., Miyazaki, N. (2009). Organotin Contamination in Deep Sea Environments. In: Arai, T., Harino, H., Ohji, M., Langston, W.J. (eds) Ecotoxicology of Antifouling Biocides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-85709-9_6

Download citation

Publish with us

Policies and ethics