Skip to main content

Toxic Interactions Between Tributyltin and Polychlorinated Biphenyls in Aquatic Organisms

  • Chapter
Ecotoxicology of Antifouling Biocides

In recent years, discharges of anthropogenic chemicals to the environment have been increasing in association with industrial development. These chemicals and their degradation products are released to the environment, discharged into water, and may ultimately contaminate aquatic organisms. Polychlorinated biphenyls (PCBs) and tributyltin (TBT) are particularly ubiquitous pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrhenius A, Backhaus T, Gronvall F et al. (2006) Effects of three antifouling agents on algal communities and algal reproduction: mixture toxicity studies with TBT, Irgarol, and Sea-Nine. Arch Environ Contam Toxicol 50:335–345

    Article  CAS  Google Scholar 

  • Burton JE, Dorociak IR, Schwedler TE et al. (2002) Circulating lysozyme and hepatic CYP1A activities during a chronic dietary exposure to tributyltin (TBT) and 3,3′,4,4′, 5-pentachlorobiphenyl (PCB-126) mixtures in channel catfish, Ictalurus punctatus. J Toxicol Environ Health 65:589–602

    Article  CAS  Google Scholar 

  • Damstra T, Barlow S, Bergman A et al. (2002) Global assessment of the state-of-the-science of endocrine disruption. WHO/PCS/EDC/02.2. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • DeLong GT, Rice CD (1997) Tributyltin potentiates 3,3′,4,4′5-pentachlorobiphenyl- induced cytochrome P-4501A-related activity. J Toxicol Environ Health 51:131–148

    Article  CAS  Google Scholar 

  • Deneer JW, Sinnige TL, Seinen W et al. (1988) The joint acute toxicity to Daphnia magna of industrial organic chemicals at low concentrations. Aquat Toxicol 12:33–38

    Article  CAS  Google Scholar 

  • Edmunds JSG, McCarthy RA et al. (2000) Permanent and functional male-to-female sex reversal in d-rR strain medaka (Oryzias latipes) following embryo microinjection of o,p'-DDT. Environ Health Perspect 108:219–224

    Article  CAS  Google Scholar 

  • Fisk AT, Johnston TA (1998) Maternal transfer of organochlorines to eggs of walleye (Stizostedion vitreum) in Lake Manitoba and western Lake Superior. J Great Lakes Res 24:917–928

    CAS  Google Scholar 

  • Hano T, Oshima Y, Oe T, Kinoshita M et al. (2005) Quantitative bio-imaging analysis for evaluation of sexual differentiation in germ cells of olvas-GFP/ST-II YI medaka (Oryzias latipes) nanoinjected in ovo with ethinylestradiol. Environ Toxicol Chem 24:70–77

    Article  CAS  Google Scholar 

  • Hano T, Oshima Y, Kim SG et al. (2007) Tributyltin causes abnormal development in embryos of medaka, Oryzias latipes. Chemosphere 69:927–933

    Article  CAS  Google Scholar 

  • Hermens J, Broekhuyzen E, Canton H et al. (1985) Quantitative structure activity relationships and mixture toxicity studies of alcohols and chlorohydrocarbons: effects on growth of Daphnia magna. Aquat Toxicol 6:209–217

    Article  CAS  Google Scholar 

  • Horiguchi T, Kojima M, Hamada F et al. (2006) Impact of tributyltin and triphenyltin on ivory shell (Babylonia japonica) populations. Environ Health Perspect 114 Suppl 1:13–19.

    Google Scholar 

  • Ishaq R, Akerman G, Naf C et al. (1999) Organic pollutant characterization and toxicity testing of settling particulate matter by nanoinjection in sea trout (Salmo trutta) eggs. Environ Toxicol Chem 18:533–543

    Article  CAS  Google Scholar 

  • Inoue S, Oshima Y, Nagai K et al. (2004) Effect of maternal exposure to tributyltin on reproduction of the pearl oyster (Pinctada fucata martensii). Environ Toxicol Chem 23:1276–1281

    Article  CAS  Google Scholar 

  • Inoue S, Oshima Y, Usuki H et al. (2006) Effects of tributyltin maternal and/or waterborne expo sure on the embryonic development of the Manila clam, Ruditapes philippinarum. Chemosphere 63:881–888

    Article  CAS  Google Scholar 

  • Kannan K, Villeneuve DL, Blankenship AL et al. (1998) Interaction of tributyltin with 3,3′,4,4′ 5-pentachlorobiphenyl-induced ethoxyresorufin O-deethylase activity in rat hepatoma cells. J Toxicol Environ Health 55:373–384

    Article  CAS  Google Scholar 

  • Kim YC, Cooper KR (1998) Interactions of 2,3,7,8-tetrachlorodibenxo-p-dioxin (TCDD) and 3,3′,4,4′5-pentachlorobiphenyl (PCB 126) for producing lethal and sublethal effects in the Japanese medaka embryos and larvae. Chemosphere 36:409–418

    Article  CAS  Google Scholar 

  • Lyssimachou A, Jenssen BM, Arukwe A (2006) Brain cytochrome P450 aromatase gene isoforms and activity levels in atlantic salmon after waterborne exposure to nominal environmental concentrations of the pharmaceutical ethynylestradiol and antifoulant tributyltin. Toxicol Sci 91:82–92

    Article  CAS  Google Scholar 

  • Mac MJ, Schwartz TR, Edsall CC et al. (1993) Polychlorinated biphenyls in Great Lakes lake trout and their eggs: relations to survival and congener composition 1979–1988. J Great Lakes Res 19:752–765

    Article  CAS  Google Scholar 

  • McAllister BG, Kime DE (2003) Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat Toxicol 65:309–316

    Article  CAS  Google Scholar 

  • Monosson E, Fleming WJ, Sullivan CV (1994) Effects of the planar PCB 3,3′, 4,43′-tetrachlorobiphenyl (TCB) on ovarian development, plasma levels of sex steroid hormones and vitellogenin, and progeny survival in the white perch (Morone americana). Aquat Toxicol 29:1–19

    Article  CAS  Google Scholar 

  • Morcillo Y, Janer G, O'Hara SC et al. (2004) Interaction of tributyltin with hepatic cytochrome P450 and uridine diphosphate-glucuronosyl transferase systems of fish: in vitro studies. Environ Toxicol Chem 23:990–996

    Article  CAS  Google Scholar 

  • Mortensen AS, Arukwe A (2007) Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon (Salmo salar) after exposure to tributyltin (TBT). Comp Biochem Physiol C Toxicol Pharmacol 145:431–441

    Article  CAS  Google Scholar 

  • Nakata H, Tanabe S, Tatsukawa R et al. (1997) Bioaccumulation profiles of polychlorinated biphenyls including coplanar congeners and possible toxicological implications in Baikal seal (Phoca sibirica). Environ Pollut 95:57–65

    Article  CAS  Google Scholar 

  • Nakata H, Sakai Y, Miyawaki T et al. (2003) Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan. Environ Sci Technol 37:3513–3521

    Article  CAS  Google Scholar 

  • Nakata H, Kannan K, Nasu T et al. (2006) Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environ Sci Technol 40:4916–4921

    Article  CAS  Google Scholar 

  • Nakayama K, Oshima Y, Hiramatsu K et al. (2004a) Alteration of general behavior of male medaka, Oryzias latipes, exposed to tributyltin and/or polychlorinated biphenyls. J Fac Agr Kyushu Univ 49:85–92

    CAS  Google Scholar 

  • Nakayama K, Oshima Y, Yamaguchi T et al. (2004b) Fertilization success and sexual behavior in male medaka, Oryzias latipes, exposed to tributyltin. Chemosphere 55:1331–1337

    Article  CAS  Google Scholar 

  • Nakayama K, Oshima Y, Hiramatsu K et al. (2005a) Effects of polychlorinated biphenyls on the schooling behavior of Japanese medaka (Oryzias latipes). Environ Toxicol Chem 24:2588–2593

    Article  CAS  Google Scholar 

  • Nakayama K, Oshima Y, Nagafuchi K et al. (2005b) Early–life-stage toxicity in offspring from exposed parent medaka, Oryzias latipes, to mixtures of tributyltin and polychlorinated biphenyls. Environ Toxicol Chem 24:591–596

    Article  CAS  Google Scholar 

  • Nakayama K, Oshima Y (2008) Adverse effects of tributyltin on reproduction of Japanese medaka, Oryzias latipes. Coast Mar Sci 32:67–76

    Google Scholar 

  • Nirmala K, Oshima Y, Lee R et al. (1999) Transgenerational toxicity of tributyltin and its combined effects with polychlorinated biphenyls on reproductive processes in Japanese medaka (Oryzias latipes). Environ Toxicol Chem 18:717–721

    Article  CAS  Google Scholar 

  • Nishikawa J, Mamiya S, Kanayama T et al. (2004) Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. Environ Sci Technol 38:6271–6276

    Article  CAS  Google Scholar 

  • Örn S, Andersson PL, Förlin L et al. (1998) The impact on reproduction of an orally administered mixture of selected PCBs in zebrafish (Danio rerio). Arch Environ Contam Toxicol 35:52–57

    Article  Google Scholar 

  • Papoulias DM, Noltie DB, Tillitt DE (2000a) An in vivo model fish system to test chemical effects on sexual differentiation and development: exposure to ethinylestradiol. Aquat Toxicol 48:37–50

    Article  CAS  Google Scholar 

  • Papoulias DM, Noltie DB, Tillitt DE (2000b) Effects of methyl testosterone exposure on sexual differentiation in medaka, Oryzias latipes. Mar Environ Res 50:181–184

    Article  CAS  Google Scholar 

  • Rice CD, Roszell LE (1998) Tributyltin modulates 3,3′,4,4′5-pentachlorobiphenyl (PCB-126)-induced hepatic CYP1A activity in channel catfish, Ictalurus punctatus. J Toxicol Environ Health 55:197–212

    Article  CAS  Google Scholar 

  • Santos MM, Micael J, Carvalho AP et al. (2006) Estrogens counteract the masculinizing effect of tributyltin in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 142:151–155

    Article  CAS  Google Scholar 

  • Schlenk D, Sapozhnikova Y, Baquirian JP et al. (2002) Predicting chemical contaminants in freshwater sediments through the use of historical biochemical endpoints in resident fish species. Environ Toxicol Chem 21:2138–2145

    Article  CAS  Google Scholar 

  • Schmidt K, Staaks GB, Pflugmacher S et al. (2005a) Impact of PCB mixture (Aroclor 1254) and TBT and a mixture of both on swimming behavior, body growth and enzymatic biotransformation activities (GST) of young carp (Cyprinus carpio). Aquat Toxicol 71:49–59

    Article  CAS  Google Scholar 

  • Schmidt K, Steinberg CEW, Staaks GBO (2005b) Influence of a xenobiotic mixture (PCB and TBT) compared to single substances on swimming behavior or reproduction of Daphnia magna. Acta Hydrochim Hydrobiol 33:287–300

    Article  CAS  Google Scholar 

  • Shimasaki Y, Kitano T, Oshima Y et al. (2003) Tributyltin causes masculinization in fish. Environ Toxicol Chem 22:141–144

    Article  CAS  Google Scholar 

  • Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”–eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756

    Article  CAS  Google Scholar 

  • Ueno D, Takahashi S, Tanaka H et al. (2003) Global pollution monitoring of PCBs and organochlorine pesticides using skipjack tuna as a bioindicator. Arch Environ Contam Toxicol 45:378–389

    Article  CAS  Google Scholar 

  • Ueno D, Inoue S, Takahashi S et al. (2004a) Global pollution monitoring of butyltin compounds using skipjack tuna as a bioindicator. Environ Pollut 127:1–12

    Article  CAS  Google Scholar 

  • Ueno D, Kajiwara N, Tanaka H et al. (2004b) Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator. Environ Sci Technol 38:2312–2316

    Article  CAS  Google Scholar 

  • Walker M, Zabel E, Ackerman G et al. (1996) Fish egg injection as an alternative exposure route for early life stage toxicity studies: description of two unique methods. In Ostrander GK, ed, Techniques in Aquatic Toxicology. Lewis, New York, pp 41–72

    Google Scholar 

  • Wang C, Zhao Y, Zheng R et al. (2006) Effects of tributyltin, benzo[a]pyrene, and their mixture on antioxidant defense systems in Sebastiscus marmoratus. Ecotoxicol Environ Saf 65:381–387

    Article  CAS  Google Scholar 

  • Westerlund L, Billsson K, Andersson PL et al. (2000) Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen. Environ Toxicol Chem 19:1582–1588

    Article  CAS  Google Scholar 

  • Wilson PJ, Tillitt DE (1996) Rainbow trout embryotoxicity of a complex contaminant mixture extracted from Lake Michigan lake trout. Mar Environ Res 42:129–134

    Article  CAS  Google Scholar 

  • Yamada H, Takayanagi K, Tateishi M et al. (1997) Organotin compounds and polychlorinated biphenyls of livers in squid collected from coastal waters and open oceans. Environ Pollut 96:217–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Oshima, Y. et al. (2009). Toxic Interactions Between Tributyltin and Polychlorinated Biphenyls in Aquatic Organisms. In: Arai, T., Harino, H., Ohji, M., Langston, W.J. (eds) Ecotoxicology of Antifouling Biocides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-85709-9_11

Download citation

Publish with us

Policies and ethics