Skip to main content

Bruxism and Stress Relief

  • Chapter
Novel Trends in Brain Science

Abstract

The masticatory organ, originally developed as a branchial system, has evolved over a long period of geological time through a stage in which it was predominantly a tool for expressing aggression into an organ for emotional management. In humans, the strong grinding and clenching function of the masticatory muscles, known as bruxism, plays a role in mitigating stress-induced psychosomatic disorders by down-regulating the limbic system, the autonomic nervous system, and the hypothalamic-pituitary-adrenal (HPA) axis. Experimental research results showed that bruxism-like activity (BLA) has beneficial effects on stress-induced reactions, such as increased expression of Fos, neuronal nitric oxide synthase (nNOS), dual phosphorylated extracellular signal-regulated kinase (pERK1/2), corticotropin-releasing factor (CRF), and free radicals in the paraventricular nucleus (PVN) of the hypothalamus. It has also been shown to cause alterations in the blood neutrophil/lymphocyte ratio, adrenocorticotropic hormone (ACTH) level, and stomach ulcer formation in animals studies and has increased amygdala neuronal activity and salivary chromogranin A level in human studies. These findings strongly suggested that parafunctional activity of the masticatory organ—aggressive BLA behavior—has the ability to decrease stress-induced allostatic overload. The health of the masticatory organ depends critically on occlusion, which must be of sufficient quality to carry out its important role in managing stress successfully. Occlusion and the brain must function in harmony. For these reasons, we must integrate the study of occlusion into the broader scope of medical science; in so doing, we can meaningfully advance the state of the art of dental care and general health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold M (1981) Bruxism and the occlusion. Dent Clin North Am 25:395–407.

    PubMed  CAS  Google Scholar 

  2. Sjoholm T, Lehtinen I, Helenius H (1995) Masseter muscle activity in diagnosed sleep bruxists compared with non-symptomatic controls. J Sleep Res 4:48–55.

    PubMed  Google Scholar 

  3. Pierce CJ, Chrisman K, Bennett ME, et al (1995) Stress, anticipatory stress, and psychologic measures related to sleep bruxism. J Orofac Pain 9:51–56.

    PubMed  CAS  Google Scholar 

  4. Kleinberg I (1994) Bruxism: aetiology, clinical signs and symptoms. Aust Prosthodont J 8:9–17.

    PubMed  CAS  Google Scholar 

  5. Rugh JD (1991) Feasibility of a laboratory model of nocturnal bruxism. J Dent Res 70:554.

    Google Scholar 

  6. Lavigne GJ, Rompre PH, Montplaisir JY (1996) Sleep bruxism: validity of clinical research diagnostic criteria in a controlled polysomnographic study. J Dent Res 75:546–552.

    PubMed  CAS  Google Scholar 

  7. Braem M, Lambrechts P, Vanherle G (1992) Stress-induced cervical lesion. J Prosthet Dent 67:718–722.

    Article  PubMed  CAS  Google Scholar 

  8. Coleman T, Grippo J, Kinderknecht K (2000) Cervical dentin hypersensitivity. Part II. Associations with abfractive lesions. Quintessence Int 31:466–465.

    PubMed  CAS  Google Scholar 

  9. McCoy G (1999) Dental compression syndrome: a new look at an old disease. Oral Implantol 25:35–49.

    Article  CAS  Google Scholar 

  10. Mandel L, Kaynar A (1994) Masseteric hypertrophy. NY State Dent J 60:44–47.

    CAS  Google Scholar 

  11. Spranger H (1995) Investigation into the genesis of angular lesions at the cervical region. Quintessence Int 26:149–154.

    PubMed  CAS  Google Scholar 

  12. Weinberg J, Erskine M, Lavine S (1980) Shock-induced fighting attenuates the effects of prior shock experience in rats. Physiol Behav 25:9–16.

    Article  PubMed  CAS  Google Scholar 

  13. Tanaka T, Yoshida M, Yokoo H, et al (1998) Expression of aggression attenuates both stress-induced gastric ulcer formation and increases in noradrenaline release in the rat amygdala assessed by intracerebral microdialysis. Pharmacol Biochem Behav 59:27–31.

    Article  PubMed  CAS  Google Scholar 

  14. Guile MN, McCutcheon NB (1980) Prepared responses and gastric lesions in rats. Physiol Psychol 8:480–482.

    Google Scholar 

  15. Vincent GP, Pare WPD, Prenatt JE (1984) Aggression, body temperature, and stress ulcer. Physiol Behav 32:265–268.

    Article  PubMed  CAS  Google Scholar 

  16. Sato S, Slavicek R (2001) Bruxism as a stress management function of the masticatory organ. Bull Kanagawa Dent Coll 29:101–110.

    Google Scholar 

  17. Sato S, Yuyama N, Tamaki K, et al (2002) The masticatory organ, brain function, stress-release, and a proposal to add a new category to the taxonomy of the healing arts: occlusion medicine. Bull Kanagawa Dent Coll 30:117–126.

    Google Scholar 

  18. Yamamoto T, Hirayama A (2001) Effects of soft-diet feeding on synaptic density in the hippocampus and parietal cortex of senescence accelerated mice. Brain Res 902:255–263.

    Article  PubMed  CAS  Google Scholar 

  19. Onozuka M, Watanabe K, Mirbod SM, et al (1999) Reduced mastication stimulates impairment of spatial memory and degeneration of hippocampal neurons in aged SAMP8 mice. Brain Res 826:148–153.

    Article  PubMed  CAS  Google Scholar 

  20. Wilkinson L, Scholey A, Wesnes K (2002) Chewing gum selectively improves aspects of memory in healthy volunteers. Appetite 38:235–236.

    Article  PubMed  Google Scholar 

  21. Farella M, Bakke M, Michelotti A, et al (1999) Cardiovascular responses in humans to experimental chewing of gums of different consistencies. Arch Oral Biol 44:835–842.

    Article  PubMed  CAS  Google Scholar 

  22. Sasaguri K, Sato S, Hirano Y, et al (2004) Involvement of chewing in memory processes in humans: an approach using fMRI. In: Nakagawa M, Hirata K, Koga Y, et al (eds) Frontiers in human brain topography. International Congress Series 1270. Elsevier, Amsterdam, pp 111–116.

    Google Scholar 

  23. Every RG (1965) The teeth as weapons: their influence on behaviour. Lancet 10:685–688.

    Article  Google Scholar 

  24. Every RG (1960) The significance of extreme mandibular movements. Lancet 2:37–39.

    Article  PubMed  CAS  Google Scholar 

  25. Labezoo F, Naeije M (2001) Bruxism is mainly regulated centrally, not peripherally. J Oral Rehabil 28:1085–1091.

    Article  Google Scholar 

  26. Slavicek R (1992) Das sogenannte kauorgan als kybernetischer regelkreis — gesamtheit — liches verstandnis in der funktionslehre. Phillipine J 9:385–391.

    Google Scholar 

  27. Slavicek R, Sato S (2004) Bruxism—a function of the masticatory organ to cope with stress. Wien Med Wochenschr 154:584–589.

    Article  PubMed  Google Scholar 

  28. Takashina H, Itoh Y, Iwamiya M, et al (2005) Stress-induced bruxism modulates stress-induced systemic tissue damages in rat. Kanagawa Shigaku 40:1–11 (Japanese with English abstract).

    Google Scholar 

  29. Ishii H, Tsukinoki K, Sasaguri K (2006, in press) Role of the masticatory organ in maintaining allostasis. Kanagawa Shigaku (Japanese with English abstract).

    Google Scholar 

  30. Gomez FM, Giralt MT, Sainz B, et al (1999) Possible attenuation of stress-induced increases in striatal dopamine metabolism by the expression of non-functional masticatory activity in the rat. Eur J Oral Sci 107:461–467.

    Article  PubMed  CAS  Google Scholar 

  31. Areso MP, Giralt, MT, Sainz B, et al (1999) Occlusal disharmonies modulate central catecholaminergic activity in the rat. J Dent Res 78:1204–1213.

    PubMed  CAS  Google Scholar 

  32. Chowdhury GM, Fujioka T, Nakamura S (2000) Induction and adaptation of Fos expression in the rat brain by two types of acute restraint stress. Brain Res Bull 52:171–182.

    Article  PubMed  CAS  Google Scholar 

  33. Kaneko M, Hori N, Yuyama N, et al (2004) Biting suppresses Fos expression in various regions of the rat brain: further evidence that the masticatory organ functions to manage stress. Stomatologie 101.7:151–156.

    Google Scholar 

  34. Hori N, Yuyama N, Tamura K (2004) Biting suppresses stress-induced expression of corticotrophin-releasing factor (CRF) in the rat hypothalamus. J Dent Res 83:124–128.

    PubMed  CAS  Google Scholar 

  35. Hori N, Lee MC, Sasaguri K, et al (2005) Suppression of stress-induced nNOS expression in the rat hypothalamus by biting. J Dent Res 84:624–628.

    Article  PubMed  CAS  Google Scholar 

  36. Sasaguri K, Kikuchi M, Hori N, et al (2005) Suppression of stress immobilization-induced phosphorylation of ERK 1/2 by biting in the rat hypothalamic paraventricular nucleus. Neurosci Lett 383:160–164.

    Article  PubMed  CAS  Google Scholar 

  37. Miyake S, Sasaguri K, Hori N, et al (2005) Biting reduces acute stress-induced oxidative stress in the rat hypothalamus. Redox Rep 10:19–24.

    Article  PubMed  CAS  Google Scholar 

  38. Kanno T, Asada N, Yanase H, et al (1999) Salivary secretion of highly concentrated chromogranin A in response to noradrenaline and acetylcholine in isolated and perfused rat submandibular glands. Exp Physiol 84(6):1073–1083.

    Article  PubMed  CAS  Google Scholar 

  39. Kanno T, Asada N, Yanase H, et al (2000) Salivary secretion of chromogranin A control by autonomic nervous system. Adv Exp Med Biol 482:143–151.

    Article  PubMed  CAS  Google Scholar 

  40. Saruta J, Tsukinoki K, Sasaguri K, et al (2004) Expression and localization of chromogranin A gene and protein in human submandibular. Cell Tissues Organs 180:237–244.

    Article  CAS  Google Scholar 

  41. McEwen B (2002) Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol Aging 23:921–939.

    Article  PubMed  CAS  Google Scholar 

  42. Selye H (1936) Syndrome produced by diverse nocuous agents. Nature 138:32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Sato, S. et al. (2008). Bruxism and Stress Relief. In: Onozuka, M., Yen, CT. (eds) Novel Trends in Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73242-6_11

Download citation

Publish with us

Policies and ethics