Skip to main content

Boundary and lens rigidity, tensor tomography and analytic microlocal analysis

  • Chapter
Algebraic Analysis of Differential Equations

Abstract

The boundary rigidity problem consists of determining a compact, Riemannian manifold with boundary, up to isometry, by knowing the boundary distance function between boundary points. Lens rigidity consists of determining the manifold, by knowing the scattering relation which measures, besides the travel times, the point and direction of exit of a geodesic from the manifold if one knows its point and direction of entrance. Tensor tomography is the linearization of boundary rigidity and length rigidity. It consists of determining a symmetric tensor of order two from its integral along geodesics. In this paper we survey some recent results obtained on these problems using methods from microlocal analysis, in particular analytic microlocal analysis. Although we use the distribution version of analytic microlocal analysis, many of the ideas were based on the pioneer work of the Sato school of microlocal analysis of which Professor Kawai was a very important member.

The first author was supported in part by NSF Grant DMS-0400869.

The second author was supported in part by NSF Grant DMS-0245414.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Alexandrova, Semi-Classical wavefront set and Fourier integral operators, to appear in Can. J. Math.

    Google Scholar 

  2. _____, Structure of the Semi-Classical Amplitude for General Scattering Relations, Comm. PDE 30(2005), 1505–1535.

    Google Scholar 

  3. M. Belishev and Y. Kurylev, To the reconstruction of a Riemannian manifold via its boundary spectral data (BC-method), Comm. PDE 17(1992), 767–804.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. N. Bernstein and M. L. Gerver, Conditions on distinguishability of metrics by hodographs, Methods and Algorithms of Interpretation of Seismological Information, Computerized Seismology 13, Nauka, Moscow, 50–73 (in Russian).

    Google Scholar 

  5. G. Besson, G. Courtois, and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictment négative, Geom. Funct. Anal., 5(1995), 731–799.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Beylkin, Stability and uniqueness of the solution of the inverse kinematic problem in the multidimensional case, J. Soviet Math. 21(1983), 251–254.

    Article  Google Scholar 

  7. D. Burago and S. Ivanov, Boundary rigidity and filling volume minimality of metrics close to a flat one, manuscript, 2005.

    Google Scholar 

  8. K. C. Creager, Anisotropy of the inner core from differential travel times of the phases PKP and PKIPK, Nature, 356(1992), 309–314.

    Article  Google Scholar 

  9. C. Croke, Rigidity for surfaces of non-positive curvature, Comment. Math. Helv., 65(1990), 150–169.

    Article  MATH  MathSciNet  Google Scholar 

  10. _____, Rigidity and the distance between boundary points, J. Differential Geom., 33(1991), no. 2, 445–464.

    MATH  MathSciNet  Google Scholar 

  11. C. Croke, N. Dairbekov, V. Sharafutdinov, Local boundary rigidity of a compact Riemannian manifold with curvature bounded above, Trans. Amer. Math. Soc. 352(2000), no. 9, 3937–3956.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Croke and B. Kleiner, Conjugacy and Rigidity for Manifolds with a Parallel Vector Field, J. Diff. Geom. 39(1994), 659–680.

    MATH  MathSciNet  Google Scholar 

  13. M. Gromov, Filling Riemannian manifolds, J. Diff. Geometry 18(1983), no. 1, 1–148.

    MATH  MathSciNet  Google Scholar 

  14. V. Guillemin, Sojourn times and asymptotic properties of the scattering matrix, Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976). Publ. Res. Inst. Math. Sci. 12(1976/77), supplement, 69–88.

    Google Scholar 

  15. G. Herglotz, Uber die Elastizitaet der Erde bei Beruecksichtigung ihrer variablen Dichte, Zeitschr. fur Math. Phys., 52(1905), 275–299.

    Google Scholar 

  16. C. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón Problem with partial data, to appear in Ann. Math.

    Google Scholar 

  17. M. Lassas, V. Sharafutdinov and G. Uhlmann, Semiglobal boundary rigidity for Riemannian metrics, Math. Ann., 325(2003), 767–793.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Michel, Sur la rigidité imposée par la longueur des géodésiques, Invent. Math. 65(1981), 71–83.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. G. Mukhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry (Russian), Dokl. Akad. Nauk SSSR 232(1977), no. 1, 32–35.

    MathSciNet  Google Scholar 

  20. R. G. Mukhometov, On a problem of reconstructing Riemannian metrics Siberian Math. J. 22(1982), no. 3, 420–433.

    Article  MathSciNet  Google Scholar 

  21. R. G. Mukhometov and V. G. Romanov, On the problem of finding an isotropic Riemannian metric in an n-dimensional space (Russian), Dokl. Akad. Nauk SSSR 243(1978), no. 1, 41–44.

    MathSciNet  Google Scholar 

  22. J. P. Otal, Sur les longuer des géodésiques d’une métrique a courbure négative dans le disque, Comment. Math. Helv. 65(1990), 334–347.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Pestov, V. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature (Russian) Sibirsk. Mat. Zh. 29(1988), no. 3, 114–130; translation in Siberian Math. J. 29(1988), no. 3, 427–441.

    MATH  MathSciNet  Google Scholar 

  24. L. Pestov and G. Uhlmann, Two dimensional simple compact manifolds with boundary are boundary rigid, Annals of Math. 161(2005), 1089–1106.

    Article  MathSciNet  Google Scholar 

  25. V. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrech, the Netherlands, 1994.

    Google Scholar 

  26. V. Sharafutdinov, M. Skokan, and G. Uhlmann, Regularity of ghosts in tensor tomography, Journal of Geometric Analysis textbf15(2005), 517–560.

    Google Scholar 

  27. V. Sharafutdinov and G. Uhlmann, On deformation boundary rigidity and spectral rigidity for Riemannian surfaces with no focal points, Journal of Differential Geometry, 56 (2001), 93–110.

    MathSciNet  Google Scholar 

  28. J. Sjöstrand, Singularités analytiques microlocales, Astérique 95(1982), 1–166.

    MATH  Google Scholar 

  29. P. Stefanov and G. Uhlmann, Rigidity for metrics with the same lengths of geodesics, Math. Res. Lett. 5(1998), 83–96.

    MATH  MathSciNet  Google Scholar 

  30. _____, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J. 123(2004), 445–467.

    Article  MATH  MathSciNet  Google Scholar 

  31. _____, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map, IMRN 17(2005), 1047–1061.

    Article  MathSciNet  Google Scholar 

  32. _____, Boundary rigidity and stability for generic simple metrics, Journal Amer. Math. Soc. 18(2005), 975–1003.

    Article  MATH  MathSciNet  Google Scholar 

  33. _____, Integral geometry of tensor fields on a class of non-simple Riemannian manifolds, arXiv:math.DG/0601178, to appear in Amer. J. Math.

    Google Scholar 

  34. _____, Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds, in progress.

    Google Scholar 

  35. D. Tataru, Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem, Comm. P.D.E. 20(1995), 855–884.

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. 1. Pseudodifferential Operators. The University Series in Mathematics, Plenum Press, New York-London, 1980.

    MATH  Google Scholar 

  37. J. Wang, Stability for the reconstruction of a Riemannian metric by boundary measurements, Inverse Probl. 15(1999), 1177–1192.

    Article  MATH  Google Scholar 

  38. E. Wiechert E and K. Zoeppritz, Uber Erdbebenwellen, Nachr. Koenigl. Geselschaft Wiss, Goettingen 4(1907), 415–549.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Stefanov, P., Uhlmann, G. (2008). Boundary and lens rigidity, tensor tomography and analytic microlocal analysis. In: Aoki, T., Majima, H., Takei, Y., Tose, N. (eds) Algebraic Analysis of Differential Equations. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73240-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-73240-2_23

  • Received:

  • Revised:

  • Accepted:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-73239-6

  • Online ISBN: 978-4-431-73240-2

  • eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)

Publish with us

Policies and ethics