Characteristics of Alicyclobacillus

  • Keiichi Goto
  • Takashi Tanaka
  • Rie Yamamoto
  • Teiichi Suzuki
  • Hajime Tokuda

Abstract

TAB, the abbreviation for “Thermo Acidophillic Bacilli (or Bacteria)” is the most widely utilized way to designate the bacteria belonging to genus Alicyclobacillus, and while it is not an exact label for Alicyclobacillus, it has come to be accepted as synonym. The designation adopted in Japanese is equivalent to “Thermo-tolerant Acidophillic Bacilli (or Bacteria)”, which is also abbreviated as TAB. Some moderately thermophilic acidophilic bacteria such as Bacillus fumarioli are included in the abbreviation, TAB, in a broader sense. Other abbreviations commonly used internationally are AAT for Alicyclobacillus acidoterrestris and BAT, the former name for Bacillus acidoterrestris. This is still used for some designations such as culture media. ATSB is sometimes seen as an abbreviation for “Acido-thermophilic Spore-forming Bacteria”, but is rarely used in Japan. Recently, ACB has been used as the abbreviation of Alicyclobacillus worldwide. These abbreviations are routinely used in language related to quality control and assurance. When a species and/or strain name is clearly specified or used for technical purposes, the scientific name of the microorganism is adopted. Although somewhat confusing, these are the current designations in use. The abbreviations used in this book follow those of the original papers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uchino F, Doi S (1967) Acido-thermophilic bacteria from thermal waters. Agric Biol Chem 31:817–822.Google Scholar
  2. 2.
    Wisotzkey JD, Jurtshuk JRP, Fox GE, Deinhard G, Poralla K. (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269.PubMedGoogle Scholar
  3. 3.
    Darland G, Brock TD (1971) Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15.Google Scholar
  4. 4.
    DeRosa M, Gambacorta A, Minale L, Bu’Lock JD (1971) Cyclohexane fatty acids from a thermophilic bacterium. Chem Commun 21:1334a.Google Scholar
  5. 5.
    Deinhard G, Blanz P, Poralla K, Altan E (1987) Bacillus acidoterrestris sp. nov., a new themotolerant acidophile isolated from different soils. System Appl Microbiol 10:47–53.Google Scholar
  6. 6.
    Deinhard G, Saar J, Krischke W, Poralla K (1987) Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing ω-cycloheptane fatty acids. System Appl Microbiol 10:68–73.Google Scholar
  7. 7.
    Wisse CA, Parish M (1998) Isolation and enumeration of sporeforming, thermo-acidophilic, rod-shaped bacteria from citrus processing environments. Dairy Food Environ Sanitation 18:504–509.Google Scholar
  8. 8.
    Eiroa MNU, Junqueira VCA, Schmidt F (1999) Alicyclobacillus in orange juice: occurrence and heat resistance of spores. J Food Protection 62:883–886.Google Scholar
  9. 9.
    Komitopoulou E, Boziaris IS, Davies EA, Delves-Broughton J, Adams MR (1999) Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. Int J Food Sci Tech 34:81–85.CrossRefGoogle Scholar
  10. 10.
    Duong HA, Jensen N (2000) Spoilage of iced tea by Alicyclobacillus. Food Australia 52:292.Google Scholar
  11. 11.
    Jensen N (2000) Alicyclobacillus in Australia. Food Australia 52:282–285.Google Scholar
  12. 12.
    Walls I, Chuyate R (2000) Spoilage of fruit juices by Alicyclobacillus acidoterrestris. Food Australia 52:286–288.Google Scholar
  13. 13.
    Walls I, Chuyate R (2000) Isolation of Alicyclobacillus acidoterrestris from fruit juices. J AOAC Int 83:1115–1120.PubMedGoogle Scholar
  14. 14.
    Silva FVM, Gibbs P (2001) Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization process. Trends Food Sci Tech 12:68–74.CrossRefGoogle Scholar
  15. 15.
    Goto K, Matsubara H, Mochida K, Matsumura T, Hara Y, Niwa M, Yamasato K (2002) Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω-cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 52:109–113.PubMedGoogle Scholar
  16. 16.
    Matsubara H, Goto K, Matsumura T, Mochida K, Iwaki M, Niwa M, Yamasato K (2002) Alicyclobacillus acidiphilus sp. nov., a new thermo-acidophilic ω-alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int J Syst Evol Microbiol 52:1681–1685.PubMedCrossRefGoogle Scholar
  17. 17.
    Cerny G, Hennlich W, Poralla K (1984) Fruchtsaftverderb durch Bacillen: Isolierung und Charakterisierung des Verderbserregers. Z Lebens Unters Forsch 179:224–227 (in German).CrossRefGoogle Scholar
  18. 18.
    Suzuki T (1989) Sansei inryou kandume no kousankin ni tsuite. Shokuhin to Youki 30:503–506 (in Japanese).Google Scholar
  19. 19.
    Sprittstoesser DF, Churey JJ, Lee CY (1994) Growth characteristics of aciduric sporeforming bacilli isolated from fruit juices. J Food Protection 57:1080–1083.Google Scholar
  20. 20.
    Yamazaki K, Tezuka H, Shinano H (1996) Isolation and identification of Alicyclobacillus acidoterrestris from acid beverages. Biosci Biotech Biochem 60:543–545.Google Scholar
  21. 21.
    Kusano K, Niwa M, Yamasato H (1997) Kaju yori bunnri sareta tainetsusei kousanseikin no bunrui. Nihon-Seiryoinryo-Kenkyukai, Dai-6-kai Kenkyu Hapyokai (in Japanese).Google Scholar
  22. 22.
    Nicolaus B, Improta R, Manca CM, Lama L, Esposito E, Gambacorta A (1998) Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann. Polar Biol 19:133–141.CrossRefGoogle Scholar
  23. 23.
    Albuquerque L, Rainey FA, Chung AP, Sunna A, Nobre MF, Grote R, Antranikian G, DeCosta MS (2000) Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of Sao Miguel in the Azores. Int J Syst Evol Microbiol 50:451–457.PubMedGoogle Scholar
  24. 24.
    Goto K, Tanimoto Y, Tamura T, Mochida K, Arai D, Asahara M, Suzuki M, Tanaka H, Inagaki K (2002) Identification of thermoacidophilic bacteria and a new Alicyclobacillus genomic species isolated from acidic environments in Japan. Extremophiles 6:333–340.PubMedCrossRefGoogle Scholar
  25. 25.
    Tsuruoka N, Isono Y, Shida O, Hemmi H, Nakayama T, Nishino T (2003) Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. Int J Syst Environ Microbiol 53:1081–1084.CrossRefGoogle Scholar
  26. 26.
    Goto K, Mochida K, Asahara M, Suzuki M, Kasai H, Yokota A (2003) Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω-alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 53:1537–1544.PubMedCrossRefGoogle Scholar
  27. 27.
    Ryu E (1940) A simple method of differentiation between Gram-positive and Gram-negative organisms without staining. Kitasato Arch Exp Med 17:58.Google Scholar
  28. 28.
    Golovacheva RS, Karavaiko GI (1979) Sulfobacillus-a new genus of spore-forming thermophilic bacteria. Microbiology (English translation of Mikrobiologiya) 47:658–665.Google Scholar
  29. 29.
    Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783.PubMedCrossRefGoogle Scholar
  30. 30.
    Dufresne S, Bousquet J, Boissinot M, Guay R (1996) Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. Int J Syst Bacteriol 46:1056–1064.PubMedGoogle Scholar
  31. 31.
    Suzuki K, Saito K, Kawaguchi A, Okuda S, Komagata K (1981) Occurrence of ω-cyclohexyl fatty acids in Curtobacterium pusillum strains. J Gen Appl Microbiol 27:261–266.Google Scholar
  32. 32.
    Kusano K, Yamada H, Niwa M, Yamasato K (1997) Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant ω-cyclohexyl fatty acid-containing propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 47:825–831.PubMedCrossRefGoogle Scholar
  33. 33.
    Kannenberg E, Blume A, Poralla K (1984) Properties of ω-cyclohexane fatty acids in membranes. FEBS 172:331–334.CrossRefGoogle Scholar
  34. 34.
    Krischke W, Poralla K (1990) Properties of Bacillus acidocaldarius mutants deficient in ω-cyclohexyl fatty acid biosynthesis. Arch Microbiol 153:463–469.CrossRefGoogle Scholar
  35. 35.
    Goto K, Mochida K, Asahara M, Suzuki M, Yokota A (2002) Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus. J Gen Appl Microbiol 48:243–250.PubMedCrossRefGoogle Scholar
  36. 36.
    Wayne LG, Brenner DJ, Colwell RR, 9 other authors (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464.Google Scholar
  37. 37.
    Walls I, Chuyate R (1998) Alicyclobacillus-Historical perspective and preliminary characterization study. Dairy Food Environ Sanitation 18:499–503.Google Scholar
  38. 38.
    Pettipher GL, Osmundson ME, Murphy JM (1997) Method for the detection and enumeration of Alicyclobacillus acidoterrestris and investigation of growth and production of taint in fruit juices and fruit juice-containing drinks. Lett Appl Microbiol 24:185–189.PubMedCrossRefGoogle Scholar
  39. 39.
    Orr RV, Shewfelt RL, Huang CJ, Tefera S, Beuchat LR (2000) Detection of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by sensory and chromatographic analysis, and comparison with spore and vegetative cell population. J Food Protection 63:1517–1522.Google Scholar
  40. 40.
    Niwa M (2003) Alicacidoterrestris Rapid Detection Kit. Fruit Processing 13:328–331.Google Scholar
  41. 41.
    Borlinghaus A, Engel R (1997) Alicyclobacillus incidence in commercial apple juice concentrate (AJC) supplies-Method development and validation. Fruit Processing 7:262–266.Google Scholar
  42. 42.
    Jensen N, Whitfield FB (2003) Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice. Lett Appl Microbiol, 36:9–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Cerny G, Duong HA, Hennlich W, Miller S (2000) Alicyclobacillus acidoterrestris: influence of oxygen content on growth in fruit juices. Food Australia 52:289–291.Google Scholar
  44. 44.
    Splittstoesser DF, Churey JJ (1996) Unique spoilage organisms of musts and wines, p 36–41. In T. Toland and K C Fugelsang (ed), Wine spoilage microbiology Conference. California State University, Fresno.Google Scholar
  45. 45.
    Yamashita M (1996) Arukorurui no biseibutsu ni taisuru sayou. J Antibact Antifung Agents 24:25–49 (in Japanese).Google Scholar
  46. 46.
    Splittstoesser D F, Lee CY, Churey JJ (1998) Control of Alicyclobacillus in the juice industry. Dairy Food Environ Sanitation 18:585–587.Google Scholar
  47. 47.
    Yamazaki K, Isoda C, Tezuka H, Kawai H, Shinano H (1997) Sansei inryou henpai kin Alicyclobacillus acidoterrestris no tainetsusei to sono seigyo. Nihon Syokuhin Kagaku Kougakukaishi 44:905–911 (in Japanese).Google Scholar
  48. 48.
    Eiroa MNU, Junqueira VCA, Schmidt FL (1999) Alicyclobacillus in orange juice: Occurrence and heat resistance of spores. J Food Protection 62:883–886.Google Scholar
  49. 49.
    Splittstoesser DF, Lee CY, Churey JJ (1998) Control of Alicyclobacillus in the Juice Industry. Dairy Food Environ Sanitation 18:585–587.Google Scholar
  50. 50.
    Silva FM, Gibbs P, Vieira MC, Silva CLM (1999) Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. Int J Food Microbiol 51:95–103.PubMedCrossRefGoogle Scholar
  51. 51.
    Murakami M, Tedzuka H, Yamazaki K (1998) Thermal resistance of Alicyclobacillus acidoterrestris spores in different buffers and pH. Food Microbiol 15:577–582.CrossRefGoogle Scholar
  52. 52.
    Pontius AJ, Rushing JE, Foegeding PM (1998) Heat resistance of Alicyclobacillus acidoterrestris spores as affected by various pH values and organic acids. J Food Protection 61:41–46.Google Scholar
  53. 53.
    Komitopoulou E, Boziaris IS, Davies EA, Delves-Broughton J, Adams MR (1999) Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. Int J Food Sci Tech 34:81–85.CrossRefGoogle Scholar
  54. 54.
    Palop A, Alvarez I, Raso J, Condo’n S (2000) Heat resistance of Alicyclobacillus acidocaldarius in water, various buffers, and orange juice. J Food Protection 63:1377–1380.Google Scholar
  55. 55.
    Matsui T, Endo M, Nakao H, Yoshimoto S (1998) Kousansei kin Alicyclobacillus acidoterrestris no tainetsusei ni tsuite. Toyo Shokuhin Kogyo College Toyo-Shokuhin Institue Kenkyu Hokokusyo 22:123–127 (in Japanese).Google Scholar
  56. 56.
    Lechowich RYV, Ordal ZJ (1962) The influence of the sporulation temperature on the heat resistance and chemical composition of bacterial spores. Can J Microbiol 8:287–295.PubMedGoogle Scholar
  57. 57.
    Gorman SP, Scott EM, Hutchinson EP (1985) Thermal resistance variations due to post-harvest treatments in Bacillus subtilis spores. J Appl Bacteriol 59:555–560.Google Scholar
  58. 58.
    Amaha M, Ordal ZJ (1957) Effect of divalent cations in the sporulation medium on the thermal death rate of Bacillus coagulans var. thermoacidurans. J Bacteriol, 74:596–604.PubMedGoogle Scholar
  59. 59.
    Yamazaki K, Kawai Y, Inoue N, Shinano H (1997) Influence of sporulation medium and divalent ions on the heat resistance of Alicyclobacillus acidoterrestris spores. Lett Appl Microbiol, 25:153–156.PubMedCrossRefGoogle Scholar
  60. 60.
    Raso J, Palop A, Bayarte M, Condo’n S, Sala FJ (1995) Influence of sporulation temperature on the heat resistance of a strain of Bacillus licheniformis. Food Microbiol 12:357–361.CrossRefGoogle Scholar
  61. 61.
    Melly E, Genest PC, Gilmore ME, Little S, Popham DL, Driks A, Setlow P (2002) Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J Appl Microbiol 92:1105–1115.PubMedCrossRefGoogle Scholar
  62. 62.
    Kovacs-Proszt G, Farks J (1976) Acta Alimentaria 5:179–188.Google Scholar
  63. 63.
    Yamazaki K, Murakami M, Kawai Y, Inoue N, Matsuda T (2000) Use of nisin for inhibition of Alicyclobacillus acidoterrestris in acidic drinks. Food Microbiol, 17 315–320.CrossRefGoogle Scholar
  64. 64.
    Azumaguchi S, Ibrahim HR, Juneja LR, Fujiki Y, Kim T, Yamamoto T (1996) Netsushori niyoru ranpaku lizochiumu no koukinsei no kaihen. Nihon Nougei Kagaku Kai Taikai 1996 nendo taikai kouen youshishu (in Japanese).Google Scholar
  65. 65.
    Inryou ni okeru shotou shibousan esuteru no kousansei gahoukin yokusei kouka. Ryoto® Mono Esuteru-P Shiryou. Mitsubishi Kagaku Fuzu Co., Ltd. (in Japanese).Google Scholar
  66. 66.
    Vieira MC, Teixeira AA, Silva FM, Gaspar N, Silva CLM (2002) Alicyclobacillus acidoterrestris spores as a target for Cupuacu nectar thermal processing: kinetic parameters and experimental methods. Int J Food Microbiol 77:71–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Walls I, Chuyate R (2000) Spoilage of fruit juices by Alicyclobacillus acidoterrestris. Food Australia 52:286–288.Google Scholar
  68. 68.
    Kagaku busshitsu anzen jyouhou teikyou shisutemu (KIS-NET), Kanagawaken Kankyou-Kagaku Senta, http://www.k-erc.pref.kanagawa.jp/kisnet/ (in Japanese).Google Scholar
  69. 69.
    Kagaku busshitsu sougou deta besu, Chikyukibo-Kagakubusshitsu Jyouhou Nettowaku. http://wwwdb.mhlw.go.jp/ginc/html/db1-j.html (in Japanese).Google Scholar
  70. 70.
    SIRI (Safety Information Resouces,Inc) MSDS Index. http://hazard.com/msds/index.phpGoogle Scholar
  71. 71.
    Jansen N, Whitfield FB (2003) Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice. Lett Appl Microbiol 36:9–14.CrossRefGoogle Scholar
  72. 72.
    Goto K (2000) Kouonsei kousansei gahou keisei saikin: Alicyclobacillus zoku saikin. J Antibact Antifung Agents 28:499–508 (in Japanese).Google Scholar
  73. 73.
    Goto K (2003) Tainetsusei kousansei kin (Alicyclobacillus zoku saikin) no kensa kanbetsuhou ni tsuite. Nihon Kaju-Kyokai (in Japanese).Google Scholar
  74. 74.
    Eguchi SY, Gilson P, Marcia M, Pinhatti EC, Azuma EH, Variane S (1999) Colecao de Culturas Tropical (CCT) Fundacao Andre Tosello and ABECitrus, Report of Research Project: Acidotermophilic sporeforming bactéria (ATSB) in orange juices. Detection methods, ecology and involvement in the deterioration of fruit juices. (in Japanese and Protégés).Google Scholar
  75. 75.
    Jensen N (2000) Alicyclobacillus in Australia. Foods Australia 52:282–285.Google Scholar
  76. 76.
    Jensen N (1999) Alicyclobacillus-a new challenge for the food industry. Foods Australia 51:33–36.Google Scholar
  77. 77.
    Whitfield FB, Last JH, Shaw KJ, Tindale CR (1988) 2,6-Dibromophenol: The cause of an iodoform-like off-flavour in some Australian crustacea. J Sci Food Agric 46:29–42.CrossRefGoogle Scholar
  78. 78.
    Borlinghaus A, Engel R (1997) Alicyclobacillus incidence in commercial apple juice concentrate (AJC) suppliers-Method development and validation. Fruit Processing 7/97:262–266.Google Scholar
  79. 79.
    Yamazaki K, Teduka H, Shinano H (1996) Isolation and identification of Alicyclobacillus acidoterrestris from acidic beverages. Biosci Biotech Biochem 60:543–545.CrossRefGoogle Scholar
  80. 80.
    Pettipher GL, Osmundson ME, Murphy JM (1997) Methods for the detection and enumeration of Alicyclobacillus acidoterrestris and investigation of growth and production of taint in fruit juice and juice-containing drinks. Lett Appl Microbiol 25:185–189.CrossRefGoogle Scholar
  81. 81.
    Goto K (2003) Saishin tainetsusei kousansei kin no kiso chishiki to sono taisakuhou. Tainetsusei kousansei kin shinpojiumu ILSI JAPAN (in Japanese).Google Scholar
  82. 82.
    Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Review: Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Industrial Microbiol 15:457–471.CrossRefGoogle Scholar
  83. 83.
    Peleg H, Naim M, Zehavi J, Rouseff RL, Nagy S (1992) Pathways of 4-vinylguaiacol formation from ferulic acid in model solutions of orange juice. J Agric Food Chem 40:764–767.CrossRefGoogle Scholar
  84. 84.
    Niwa M (2004) Guaiakoru kensyutu kitto (Peruokishi daze hou) niyoru sansei inryou yuugai kin no kanri. Japan Food Sci 43:23–28 (in Japanese).Google Scholar
  85. 85.
    Goto K (2005) Orenji jusu niokeru guaiakoru seisei ni itarumadeno jidousanka to biseibutukoso no kanyo. Heisei 17nendo Kaju gijutu kenkyu happyokai (in Japanese).Google Scholar
  86. 86.
    Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat’eva TF, Tsaplina IA, Egorova MA, Krasil’nikova EN, Zakharchuk LM (2005) Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 55:941–947.PubMedCrossRefGoogle Scholar
  87. 87.
    Simbahan J, Drijber R, Blum P (2004) Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Spring, California, USA. Int J Syst Evol Microbiol 54:1703–1707.PubMedCrossRefGoogle Scholar
  88. 88.
    Goto K, Fujita R, Asahara M, Oono A, Koda A, Suzuki M (2005) Orenji jusu ni okeru guaiakoru seisei ni itaru madeno jidousanka to biseibutu kouso no kanyo. Nihon Kaju-Kyokai Gijutu Kenkyu Kai Youshishu (in Japanese).Google Scholar
  89. 89.
    Goto K, Mochida K, Kato Y, Asahara M, Fujita R, An SY, Kasai K, Yokota A Proposal of Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawaensis sp. nov., Alicyclobacillus macrosporangidus sp. nov., Alicyclobacillus sacchari sp. nov., and Alicyclobacillus shizuokaensis sp. nov., novel moderately-thermophilic, acidophilic, endospore-forming bacteria. Int J Syst Evol Microbiol (in review).Google Scholar
  90. 90.
    Simbahan J, Drijber R, Blum P (2004) Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Spring, California, USA. Int J Syst Evol Microbiol 54:1703–1707.PubMedCrossRefGoogle Scholar
  91. 91.
    Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat’eva TF, Tsaplina IA, Egorova MA, Krasil’nikova EN, Zakharchuk LM (2005) Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 55:941–947.PubMedCrossRefGoogle Scholar
  92. 92.
    Goto K, Mochida K, Kato Y, Asahara M, Ozawa C, Kasai H, Yokota A (2006) Diversity of Alicyclobacillus isolated from fruit juices and their raw materials, and emended description of Alicyclobacillus acidocaldarius. Microbiol Cult Coll 22:1–14.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Keiichi Goto
    • 1
  • Takashi Tanaka
    • 2
  • Rie Yamamoto
    • 3
  • Teiichi Suzuki
    • 3
  • Hajime Tokuda
    • 4
  1. 1.Food Research LaboratoriesMitsui Norin Co., Ltd.Japan
  2. 2.Food Technology Research InstituteMeiji Dairies Corp.Japan
  3. 3.Microbial ScienceCoca·Cola Tokyo Research & Development Company LimitedTokyo
  4. 4.Safety and Microbial Control Research CenterKao Corp.Japan

Personalised recommendations