Skip to main content

Quantification of Ordinal Variables: A Critical Inquiry into Polychoric and Canonical Correlation

  • Conference paper
Recent Advances in Statistical Research and Data Analysis

Summary

“Scaling” or “quantification” was re-examined with respect to its main objectives and requirements. Among other things, the attention was directed to the condition that the variance-covariance matrix of scaled quantities must be positive definite or semi-definite in order for the variables to be mapped in Euclidean space. Dual scaling was chosen to guide us through the search for identifying problems, understanding the basic aspects of those problems and practical remedies for them. In particular, the pair-wise quantification approach and the global quantification approach to multivariate analysis were used to identify some tricky theoretical problems, associated with the failure of identifying coordinates of variables in Euclidean hyper-space. One of the problems, arising from the pair-wise quantification, was the lack of a geometric definition of correlation between two sets of categorical variables. This absence of a geometric definition was attributed to the lack of a single data matrix, often leading to negative eigenvalues of the correlation matrix. Then the attention was shifted to the calculation of polychoric correlation and canonical correlation for categorized ordinal variables, the practice often seen in the study of structural equation modeling (SEM). Of particular interest were the problems associated with the pair-wise determination of thresholds (polychoric correlation), the univariate determination of thresholds (polychoric correlation) and the pair-wise determination of category weights (canonical correlation). The study identified two possible causes for the failure of mapping variables in Euclidean space: the pair-wise determination of thresholds or categories and the lack of underlying multivariate normality of the distribution. The degree of this failure was noted as an increasing function of the number of variables in the data set. It was highlighted then that dual scaling could mitigate the problems due to these causes that the current SEM practice of using polychoric correlation and canonical correlation would constantly encounter. Numerical examples were provided to show what is at stake when scaling is not properly carried out. It was stressed that when one cannot reasonably make the assumption of the latent multivariate normal distribution dual scaling offers an excellent alternative to canonical correlation and polychoric correlation as used in SEM because dual scaling transforms the data towards the categorized normal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beltrami, E. (1873). Sulle funzioni bilineari (On the linear functions). In G. Battagline and E. Fergola (Eds.), Giornale di Mathematiche, 11, 98–106.

    Google Scholar 

  • Bentler, P. M. (1989). EQS structural equations program manual. Los Angeles: BMDP Statistical Software.

    Google Scholar 

  • Benzécri, J.-P. and Cazes, P. (1973). L’Analyse des Données: II. L’Analyse des Correspondances (Data analysis II: Correspondence analysis. Paris: Dunod.

    Google Scholar 

  • Bock, R. D. (1960). Methods and applications of optimal scaling. The University of North Carolina Psychometric Laboratory Research Memorandum, No. 5.

    Google Scholar 

  • Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Bradley, R. A. and Terry, M. E. (1952). Rank analysis ofincomplete block design: The method of paired comparisons. Biometrika, 39, 324–345.

    MathSciNet  MATH  Google Scholar 

  • Coombs, C. H. (1964). A theory of data. New York: Wiley.

    Google Scholar 

  • Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.

    Article  Google Scholar 

  • Escofier-Cordier, B. (1969). L’analyse factorielle des correspondances. Bureau Universitaire de Recherche Operationelle, Cahiers, Série Recherche, 13, 25–29.

    Google Scholar 

  • Gifi, A. (1990). Nonlinear multivariate analysis. New York: Wiley.

    MATH  Google Scholar 

  • Greenacre, M. J. (1984). Theory and applications of correspondence Analysis. London: Academic Press.

    MATH  Google Scholar 

  • Guttman, L. (1950). Chapters 3–6. Measurement and prediction, edited by Stouffer, S. A., et al., Princeton: Princeton University Press.

    Google Scholar 

  • Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System Technical Journal,26 147–160.

    Google Scholar 

  • Hayashi, C. (1950). On the quantification ofqualitative data from the mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 2, 35–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Hayashi, C. (1952). On the prediction of phenomenon from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 3, 69–98.

    Article  MATH  Google Scholar 

  • Hemsworth, D. (1999). Personal communication with Stephen DuToit.

    Google Scholar 

  • Hemsworth, D. (2002). The use of dual scaling for the production of correlation matrices for use in structural equation modeling. Unpublished Ph.D. thesis, University of Toronto.

    Google Scholar 

  • Hill, M. O. (1974). Correspondence analysis: A neglected multivariate method. Applied Statistics, 23, 340–354.

    Article  Google Scholar 

  • Hirshcfeld, H. O. (1935). A connection between correlation and contingency. Cambridge Philosophical Society Proceedings, 31, 520–524.

    Article  Google Scholar 

  • Horst, P. (1935). Measuring complex attitudes. Journal of Social Psychology, 6, 369–374.

    Article  Google Scholar 

  • Hotelling, H. (1936). Relation between two sets of variables. Biometrika, 28, 321–377.

    MATH  Google Scholar 

  • Jordan, C. (1874). Mémoire sur les formes bilineares (Notes on bilinear forms). Journal de Mathématiques Pures et Appliquées, Deuxiéme Série, 19, 35–54.

    Google Scholar 

  • Jöreskog, K. and Sorbom, D. (1996). Lisrel 8: Users reference guide. Chicago: Scientific Software International.

    Google Scholar 

  • Jöreskog, K. and Sorbom, D. (1996). Prelis 2: Users reference guide. Chicago: Scientific Software International.

    Google Scholar 

  • Kendall, M. G. and Stuart, A. (1961). The Advanced Theory of Statistics. Volume II. London: Griffin.

    Google Scholar 

  • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S. Y., Poon, W. Y., and Bentler, P. M. (1990a). A three-stage estimation procedure for structural equation models with polytomous variables. Psychometrika, 55, 45–52.

    Article  Google Scholar 

  • Lee, S. Y., Poon, W. Y., and Bentler, P. M. (1990b). Full maximum likelihood analysis of structural equation models with polytomous variables. Statistics and Probability Letters, 9, 91–97.

    Article  MathSciNet  Google Scholar 

  • Lee, S. Y., Poon, W. Y., and Bentler, P. N. (1992). Structural equation models with continuous and polytomous variables. Psychometrika, 57, 89105.

    Article  Google Scholar 

  • Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 44–53.

    Google Scholar 

  • Lingoes, J. C. (1964). Simulataneous linear regression: An IBM 7090 por-gram for analyzing metric/nonmetric data. Behavioral Science, 9, 87–88.

    Google Scholar 

  • Lord, F. M. (1958). Some relations between Guttman’s principal components of scale analysis and other psychometric theory. Psychometrika, 23, 291–296.

    Article  MATH  Google Scholar 

  • Luce, R. D. (1959). Individual choice behavior. New York: Wiley.

    MATH  Google Scholar 

  • MacCallum, R. (1983). A comparison of factor analysis program in SPSS, BMDP, and SAS. Psychometrika, 48, 223–231.

    Article  MATH  Google Scholar 

  • Martinson E. O., and Hamdan, M. A. (1971). Maximum likelihood and some other asymptotically efficient estimators of correlation in two-way contingency tables. Journal of Statistical Computation and Simulation, 1, 45–54.

    Article  Google Scholar 

  • Messick, S. J., and Abelson, R. P. (1956). The additive constant problem in multidimensional scaling. Psychometrika, 21, 1–17.

    Article  MATH  Google Scholar 

  • Minkowski, H. (1896). Geometrie der Zahlen. Leipzig: Teubner.

    Google Scholar 

  • Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent variable indicators. Psychometrika, 49, 115–132.

    Article  Google Scholar 

  • Muthén, B. (1988). LISCOMP: Analysis of linear structural equations with a comprehensive measurement model. Chicago: Scientific Software.

    Google Scholar 

  • Nishisato, S. (1980). Analysis of categorical data: dual scaling and its applications. Toronto: University of Toronto Press.

    MATH  Google Scholar 

  • Nishisato, S. (1993). On quantifying different types of categorical data. Psychometrika, 58, 617–629.

    Article  MATH  Google Scholar 

  • Nishisato, S. (1994). Elements of dual scaling. Hillsdale, N.J.: Lawrence Erlbaum Associates.

    Google Scholar 

  • Nishisato, S. (1996). Gleaning in the field of dual scaling. Psychometrika, 61, 559–599.

    Article  MATH  Google Scholar 

  • Nishisato, S. (1998). Unifying a spectrum of data types under a comprehensive frame work for data analysis. A talk presented at a symposium at the Institute of Statistical Mathematics, Tokyo, Japan.

    Google Scholar 

  • Nishisato, S. (2000). Personal communication with Karl Jöreskog.

    Google Scholar 

  • Nishisato, S., and Sheu, W. J. (1980). Piecewise method of reciprocal averages for dual scaling of multiple-choice data. Psychometrika, 45, 467–478.

    Article  MATH  Google Scholar 

  • Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 485–500.

    Article  MathSciNet  Google Scholar 

  • Olsson, U., Drasgow, F., and Doran, N. J. (1982). The polyserial correlation coefficient. Psychometrika, 47, 337–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Poon, W. Y., and Lee, S. Y. (1987). Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients. Psychometrika, 52, 409–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson, M. and Kuder, G. F. (1933). Making a rating scale that measures. Personnel Journal, 12, 36–40.

    Google Scholar 

  • Sas Institute Inc. (1991). The CALIS procedure: Analysis of covariance structures. Cary, N.C.

    Google Scholar 

  • Schmidt, E. (1907). Zür Theorie der linearen und nichtlinearen Integleichungen Erster Teil. Entwicklung willkürlicher Functionen nach Syetemen vorgeschriebener. Mathematische Annalen, 63, 433–476.

    Article  MathSciNet  MATH  Google Scholar 

  • Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika, 27, 125–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika, 27, 219–245.

    Article  MathSciNet  Google Scholar 

  • Steiger, J. H. (1989). EzPATH: A supplementary module for SYSTAT and SYGRAPH. Evanston, Il.: SYSTAT.

    Google Scholar 

  • Stevens, S. S. (1951). Handbook of Experimental Psychology. New York: Wiley.

    Google Scholar 

  • Talfis, G. (1962). The maximum likelihood estimation of correlation from contingency tables. Biometrics, 18, 342–353.

    Article  MathSciNet  Google Scholar 

  • Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273–286.

    Article  Google Scholar 

  • Torgerson, W. S. (1952). Multidimensional scaling. I. Theory and method. Psychometrika, 17, 401–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Torgerson, W. S. (1958). Theory and Methods of Scaling. New York: Wiley.

    Google Scholar 

  • Wilson, D., Wood, R., and Gibbons, R. (1984). Testfact: Test scoring, item statistics, and item factor analysis. Chicago: Scientific Software.

    Google Scholar 

  • Wothke, W. (1993). Nonpositive definite matrices in structural modeling. Testing structural equation models, edited by Bollen, K. and Long, S., 256293, Newbury Park: Sage.

    Google Scholar 

  • Yanai, H., Shigemasu, K., Maekawa, S., and Ichikawa, M. (1990). Inshi Bunseki (Factor Analysis). Tokyo: Asakura Shoten (in Japanese)

    Google Scholar 

  • Young, G., and Householder, A. S. (1938). A note on multi-dimensional psychophysical analysis. Psychometrika, 6, 331–333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 The Institute of Statistical Mathematics

About this paper

Cite this paper

Nishisato, S., Hemsworth, D. (2002). Quantification of Ordinal Variables: A Critical Inquiry into Polychoric and Canonical Correlation. In: Baba, Y., Hayter, A.J., Kanefuji, K., Kuriki, S. (eds) Recent Advances in Statistical Research and Data Analysis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68544-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68544-9_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68546-3

  • Online ISBN: 978-4-431-68544-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics