Skip to main content

Protein and Polyamine Metabolism in Reversible Cerebral Ischemia of Gerbils

  • Chapter
Advances in Brain Resuscitation

Abstract

The interruption of blood flow to the brain induces disturbances of brain metabolism [1] which are not immediately reversed after restoration of cerebral blood flow. The timecourses of ischemia-induced disturbances do vary, however, for different biochemical events. The recovery of energy metabolism is a fast process following short-term cerebral ischemia and the content of high energy phosphates is rapidly replenished after the onset of recirculation [2]. Inhibition of protein biosynthesis, in contrast, persisted for hours or even days after ischemia. [3–9]. The consequences of prolonged disturbances in protein biosynthesis are not known; however, it is obvious that persistent inhibition of protein biosynthesis must effect the integrity of the cell as long as the degradation of proteins is not reduced to the same extent as the biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowry OH, Passonneau JV, Hasselberger FY, Schulz DW (1964) Effects of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239: 18–30

    PubMed  CAS  Google Scholar 

  2. Siesjö BK (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  3. Kleihues P, Hossmann K-A, Pegg AE, Kobayashi K, Zimmermann V (1975) Resuscitation of the monkey brain after one hour complete ischemia: III. Indications of metabolic recovery. Brain Res 95: 61–73

    Article  PubMed  CAS  Google Scholar 

  4. Cooper HK, Zalewska T, Kawakami S, Hossmann K-A (1977) The effect of ischemia and recirculation on protein synthesis in the brain. J Neurochem 28: 929–934

    Article  PubMed  CAS  Google Scholar 

  5. Dienel GA, Pulsinelli WA, Duffy TE (1980) Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem 35: 1216–1226

    Article  PubMed  CAS  Google Scholar 

  6. Nowak TS, Fried RL, Lust WD, Passonneau JV (1985) Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J Neurochem 44: 487–494

    Article  PubMed  CAS  Google Scholar 

  7. Bodsch W, Takahashi K, Barbier A, Grosse Ophoff B, Hossmann K-A (1985) Cerebral protein synthesis and ischemia. Prog Brain Res 63: 197–210

    Article  PubMed  CAS  Google Scholar 

  8. Thilmann R, Xie Y, Kleihues P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 71: 88–93

    Article  CAS  Google Scholar 

  9. Xie Y, Hossmann KA, Munekata K, Seo K (1987) Prolonged suppression of protein synthesis after brief cerebral ischemia in gerbils. In: Cervos-Navarro J, Ferszt R (eds) Stroke and microcirculation. Raven, New York pp 135–141

    Google Scholar 

  10. Nowak TS (1985) Synthesis of a stress protein following transient ischemia in the gerbil. J Neurochem 45: 1635–1641

    Article  PubMed  CAS  Google Scholar 

  11. Dienel GA, Kiessling M, Jacewicz M, Pulsinelli WA (1986) Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J Cereb Blood Flow Metab 6: 505–510

    Article  PubMed  CAS  Google Scholar 

  12. Kiessling M, Dienel GA, Jacewicz M, Pulsinelli WA (1986) Protein synthesis in postischemic rat brain: A two-dimensional electrophoretic analysis. J Cereb Blood Flow Metab 6: 642–649

    Article  PubMed  CAS  Google Scholar 

  13. Dienel GA, Cruz NF, Rosenfeld SJ (1985) Temporal profiles of proteins responsive to transient ischemia. J Neurochem 44: 600–610

    Article  PubMed  CAS  Google Scholar 

  14. Paschen W, Röhn G, Meese CO, Djuricic B, Schmidt-Kastner R (1988) Polyamine metabolism in reversible cerebral ischemia: Effect of a-difluoromethylornithine. Brain Res 453: 9–16

    Article  PubMed  CAS  Google Scholar 

  15. Pegg AE, Lockwood DH, Williams-Ashman HG (1970) Concentration of polyamines and their enzymic synthesis during androgen-induced prostatic growth. J Biochem 117: 17–31

    CAS  Google Scholar 

  16. Hallmayer J, Hossmann KA, Mies G (1985) Low dose of barbiturates for prevention of hippocampal lesions after brief ischemic episodes. Acta Neuropathol (Berl) 68: 2731

    Article  Google Scholar 

  17. Kirino T, Tamura A, Sano K (1986) A reversible type of neuronal injury following ischemia in the gerbil. Stroke 17: 455–459

    Article  PubMed  CAS  Google Scholar 

  18. Paschen W, Hallmayer J, Röhn G (1988) Relationship between putrescine content and density of ischemic cell damage in the brain of Mongolian gerbils: Effect of nimodipine and barbiturate. Acta Neuropathol (Berl) 76: 388–394

    Article  CAS  Google Scholar 

  19. Paschen W, Hallmayer J, Röhn G (1988) Regional changes of polyamine profiles after reversible cerebral ischemia in Mongolian gerbils: Effects of nimodipine and barbiturate. Neurochem Pathol 8: 27–41

    CAS  Google Scholar 

  20. Djuricic BM, Paschen W, Schmidt-Kastner R (1988) Polyamines in the brain: HPLC analysis and its application in cerebral ischemia. Jugosl Physiol Pharmacol Acta 24: 917

    Google Scholar 

  21. Kleihues P, Hossmann K-A (1973) Regional incorporation of L-(3–3H)tyrosine into cat brain proteins after 1 hour of complete ischemia. Acta Neuropathol (Berl) 25: 313–324

    Article  CAS  Google Scholar 

  22. Bodsch W, Barbier A, Oehmichen M, Grosse Ophoff B, Hossmann K-A (1986) Recovery of monkey brain after prolonged ischemia: H. Protein synthesis and morphological alterations. J Cereb Blood Flow Metab 6: 15–21

    Article  Google Scholar 

  23. Smith CB, Deibler GE, Eng N, Schmidt K, Sokoloff L (1988) Measurement of local cerebral protein synthesis in vivo: Influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci USA 85: 9341–9345

    Google Scholar 

  24. Hightower LE, White FP (1981) Cellular response to stress: comparison of a family of 71–73 kilodalton proteins rapidly synthesized in rat tissue slices and canavanine treated cells in culture. J Cell Physiol 108: 261–275

    Article  PubMed  CAS  Google Scholar 

  25. Schlesinger MJ, Ashburner M, Tissueres A (eds) (1982) Heat shock from Bacteria to Man. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  26. Cosgrove JW, Brown IR (1983) Heat shock protein in mammalian brain and other organs after physiologically relevant increase in body temperature induced by D- lysergic acid diethylamide. Proc Natl Acad Sei 80: 569–573

    Article  CAS  Google Scholar 

  27. Jänne J, Poso H, Raina A (1978) Polyamines in rapid growth and cancer. Biochim Biophys Acta 473: 241–293

    PubMed  Google Scholar 

  28. Canellakis ES, Viceps-Madore D, Kyriakidis DA, Heller JS (1979) The regulation and function of ornithine decarboxylase and of the polyamines. Curr Top Cell Reg 15: 155–202

    CAS  Google Scholar 

  29. Seiler N (1981) Polyamine metabolism and function in the brain. Neurochem Int 3: 95–110

    Article  PubMed  CAS  Google Scholar 

  30. Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243: C212 - C221

    PubMed  CAS  Google Scholar 

  31. Dienel GA, Cruz NF (1984) Induction of brain ornithine decarboxylase during recovery from metabolic, mechanical, thermal or chemical injury. J Neurochem 42: 1053–1061

    Article  PubMed  CAS  Google Scholar 

  32. Pelham HRB (1984) HSP 70 accelerates the recovery of nuclear morphology after heat shock. EMBO J 3: 3095–3100

    PubMed  CAS  Google Scholar 

  33. Petito CK, Babiak T (1982) Early proliferative changes in astrocytes in postischemic noninfarcted rat brain. Ann Neurol 11: 510–518

    Article  PubMed  CAS  Google Scholar 

  34. Dempsey RJ, Maley BE, Cowen DE, Olson JW (1988) Ornithine decarboxylase activity and immunohistochemical location in postischemic brain. J Cereb Blood Flow Metab 8: 843–847

    Article  PubMed  CAS  Google Scholar 

  35. Nemeth G, Cintra A, Mayer G, Fuxe K, Hoyer S (1988) Characteristics of neurological deficits and behavioral impairments of rats induced by bilateral incomplete cerebral ischemia. In: Meyer JS, Lechner H, Reivich H, Ott EO (eds) Cerebrovascular disease 7. Excerpta Medica, pp 267–270

    Google Scholar 

  36. Paschen W, Schmidt-Kastner R, Djuricic B, Meese C, Linn F, Hossmann K-A (1987) Polyamine changes in reversible cerebral ischemia. J Neurochem 49: 35–37

    Article  PubMed  CAS  Google Scholar 

  37. Paschen W, Hallmayer J, Mies G (1987) Regional profile of polyamines in reversible cerebral ischemia of Mongolian gerbils. Neurochem Pathol 7: 143–156

    Article  PubMed  CAS  Google Scholar 

  38. Frydman B, Frydman RB, De Los Santos C, Alonso Garrids D, Goldemberg SH, Algranti ID (1984) Putrescine distribution in Escherichia coli studied in vivo by 13 C nuclear magnetic resonance. Biochim Biophys Acta 805: 337–344

    Article  PubMed  CAS  Google Scholar 

  39. Iqbal Z, Koenig H (1985) Polyamines appear to be second messengers in mediating Ca2+ fluxes and neurotransmitter release in potassium-depolarized synaptosomes. Biochem Biophys Res Commun 133: 563–573

    Article  PubMed  CAS  Google Scholar 

  40. Bondy SC, Walker CH (1986) Polyamines contribute to calcium-stimulated release of aspartate from brain particulate fractions. Brain Res 371: 96–100

    Article  PubMed  CAS  Google Scholar 

  41. Komulainen H, Bondy SC (1987) Transient elevation of intrasynapto-somal free calcium by putrescine. Brain Res 401: 50–54

    Article  PubMed  CAS  Google Scholar 

  42. Nistico G, Jentile R, Rotiroti D, Di Giorgio RM (1980) GABA depletion and behavioral changes produced by intraventricular putrescine in chicks. Biochem Pharmacol 29: 954–957

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Paschen, W., Xie, Y., Röhn, G., Hallmayer, J., Hossmann, KA. (1991). Protein and Polyamine Metabolism in Reversible Cerebral Ischemia of Gerbils. In: Takeshita, H., Siesjö, B.K., Miller, J.D. (eds) Advances in Brain Resuscitation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68538-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68538-8_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68540-1

  • Online ISBN: 978-4-431-68538-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics