Skip to main content
  • 1335 Accesses

Summary

Interacting diffusion systems are a class of diffusion processes taking values in an infinite product space of an interval, which models the variety of phenomena in physics and biology. This paper surveys the subject of interacting diffusion systems and related problems. Topics include:

  1. 1.

    Introduction.

  2. 2.

    Stationary distributions and ergodic theorems in transient case.

  3. 3.

    Zd-shift invariance of stationary distributions.

  4. 4.

    Local extinction in transient case.

  5. 5.

    Uniformity and local extinction in recurrent case.

  6. 6.

    Parabolic Anderson model and sample Lyapunov exponent.

  7. 7.

    Finite systems of interacting diffusions.

  8. 8.

    Approximation of infinite systems via finite systems.

  9. 9.

    Methods and some technicalities.

  10. 9.1

    Duality.

  11. 9.2

    Comparison.

  12. 9.3

    Coupling.

  13. 9.4

    Liouville property.

  14. 9.5

    Random walk estimates.

  15. 9.6

    Moments estimates.

  16. 9.7

    Idea of the proof of the approximation result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bramson, J.T. Cox and A. Greven: Ergodicity of critical spatial branching processes in low dimension, Ann. Probab. 21, 1946–1957 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Bramson, J.T. Cox and A. Greven: Invariant measures of critical spatial branching processes in high dimensions, to appear in Ann. Probab. (1996).

    Google Scholar 

  3. J.T. Cox: Coalescing random walks and voter model consensus times on the torus in Z d. Ann. Probab. 17, 1333–1366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.T. Cox, K. Fleischmann and A. Greven: Comparison of interacting diffusions and an application to their ergodic theory,(preprint).

    Google Scholar 

  5. J.T. Cox and A. Greven: On the long term behavior of some finite particle systems, Probab. Th. Rel. Fields 85, 195–237 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  6. J.T. Cox and A. Greven: Ergodic theorems for infinite systems of interacting diffusions, Ann. Probab. 22, 833–853 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  7. J.T. Cox and D. Griffeath: Diffusive clustering in the two dimensional voter model, Ann. Probab. 14, 347–370 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  8. J.T. Cox, A. Greven and T. Shiga: Finite and infinite systems of interacting diffusions, Probab. Th. Rel. Fields 103, 165–197 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. J.T. Cox, A. Greven and T. Shiga: Finite and infinite systems of interacting diffusions, Part II,(preprint).

    Google Scholar 

  10. R.A. Carmona and S.A. Molchanov: Prabolic Anderson problem and intermittency, AMS Memoir 108, No. 518 (1994).

    Google Scholar 

  11. R.A. Carmona and Viens: (personal communication).

    Google Scholar 

  12. D.A. Dawson: The critical measure diffusion process, Z. Wahr. verw. Geb. 40, 125–145 (1977).

    Article  MATH  Google Scholar 

  13. J.-D. Deuschel: Central limit theorem for an infinite lattice system of interacting diffusion processes, Ann. Probab. 16, 700–716 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. J-N. Deuschel: Algebraic L 2 -decay of attractive critical process on the lattice, Ann. Probab. 22, 264–293 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  15. E.B. Dynkin: Sufficient statistics and extreme points, Ann. Probab. 6, 705–730 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  16. D.A. Dawson and A. Greven: Multiple time scale analysis of interacting diffusions, Prob. Th. Rel. Fields 95, 467–508 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Kimura: “Stepping stone”model of population, Ann. Rep. Nat. Inst. Gen. 3, 62–63 (1953).

    Google Scholar 

  18. M. Kimura and T. Ohta: Theoretical Aspects of Population Genetics, Princeton University Press (1971).

    Google Scholar 

  19. T.M. Liggett: Interacting Particle Systems, Springer Verlag (1985).

    Google Scholar 

  20. T.M. Liggett and F. Spitzer: Ergodic theorems for coupled random walks and other systems with locally interacting components, Z. Wahrsch. verw. Gebiete 56, 443–468 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Notohara and T. Shiga: Convergence to genetically uniform state in stepping stone models of population genetics, J. Math. Biol. 10, 281–294 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Sato: Limit diffusions of some stepping stone models, J. Appl. Prob. 20, 460–471 (1983).

    Article  MATH  Google Scholar 

  23. T. Shiga: An interacting system in population genetics, J. Math. Kyoto Univ. 20, 213–243 (1990).

    MathSciNet  Google Scholar 

  24. T. Shiga: An interacting system in population genetics II, J. Math. Kyoto Univ. 20, 723–733 (1990).

    MathSciNet  Google Scholar 

  25. T. Shiga: Ergodic theorems and exponential decay of sample paths for certain interacting diffusion systems, Osaka J. Math. 29, 789–807 (1992).

    MathSciNet  MATH  Google Scholar 

  26. T. Shiga: Stationary distribution problem for interacting diffusion systems, CRM Proceeding and Lecture Notes 5, 199–211 (1994).

    MathSciNet  Google Scholar 

  27. T. Shiga: A note on sample Lyapunov exponents of a class of SPDE,(preprint).

    Google Scholar 

  28. T. Shiga and A. Shimizu- Infinite-dimensional stochastic differential equations and their applications, J. Math. Kyoto Univ. 20, 395–416 (1980).

    MathSciNet  MATH  Google Scholar 

  29. T. Shiga and K. Uchiyama: Stationary states and their stability of the stepping stone model involving mutation and selection, Prob. Th. Rel. Fields 73, 87–117 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Spitzer: Principles of Random Walk, Springer-Verlag (1976).

    Google Scholar 

  31. S. Watanabe: A limit theorem of branching processes and continuous branching processes, J. Math. Kyoto Univ. 8, 141–167 (1968).

    MathSciNet  MATH  Google Scholar 

  32. S. Watanabe and T. Yamada: On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ. 11, 155–167 (1971).

    MathSciNet  MATH  Google Scholar 

  33. Ya.B. Zeldovich, S.A. Molchanov, A.A. Ruzmaikin and D.D. Sokoloff: Intermittency, diffusion and generation in nonstationary random medium, Soviet Sci. Rev. Math. Phys. 7, 1–110 (1988).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Shiga, T. (1996). Interacting diffusion systems over Zd . In: Ikeda, N., Watanabe, S., Fukushima, M., Kunita, H. (eds) Itô’s Stochastic Calculus and Probability Theory. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68532-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68532-6_20

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68534-0

  • Online ISBN: 978-4-431-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics