Skip to main content

Biological Role of Matrix Metalloproteinases and the Endogenous Inhibitor Proteins in the Periprosthetic Connective Tissue Remodeling Around Loose Artificial Hip Joints

  • Conference paper
  • 191 Accesses

Summary

The biological role of extracellular matrix metalloproteinase (MMP) enzymes and their endogenous inhibitor proteins, tissue inhibitors of metalloproteinases (TIMPs), as a local host response, in the periprosthetic connective tissue remodeling around loose artificial hip joints was reviewed. In the periprosthetic granulomatous interface connective tissues between bone and implants and inner reactive cellular regenerating pseudocapsular tissues, MMP-1, MMP-2, MMP-3, MMP-9, and membrane type 1-MMP enzymes were at least well-shown in the light of immunohistochemistry, enzyme-activity analysis and protein-mRNA levels, when compared to outer fibrous capsular tissues and non-inflammatory synovial tissues. TIMP-1 and TIMP-2 were also continuously well-found in the corresponding tissues. Analysis of MMP-TIMP interaction shows that dominant MMPs cause imbalance between the enzymes and their endogenous inhibitor proteins, and also induces pathological periprosthetic connective tissue remodeling around total hip implants. The data suggest that an imbalanced MMP-TIMP system participates in the pathological extracellular matrix degradation and remodeling in the periprosthetic connective tissues, and relates to the biological local host response to the implants, thus contributing to implant loosening and periprosthetic osteolysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldring SR, Schiller AL, Roelke M et al (1983) The synovial-like membrane at the bone cement interface in loose total hip replacement and its proposed role in bone lysis. J Bone Joint Surg 65A: 575–584

    PubMed  CAS  Google Scholar 

  2. Goldring SR, Jasty M, Roelke MS et al (1986) Formation of the synovial-like membrane at the bone cement interface: its role in bone resorption and implant loosening after total hip replacement. Arthritis Rheum 29: 836–842

    Article  PubMed  CAS  Google Scholar 

  3. Santavirta S, Konttinen YT, Bergroth V et al (1990) Aggressive granulomatous lesions associated with hip arthroplasty: immunopathological studies. J Bone Joint Surg 72A: 252–258

    PubMed  CAS  Google Scholar 

  4. Santavirta S, Konttinen YT, Hoikka V et al (1991) Immunopathological response to loose cementless acetabular components. J Bone Joint Surg 73B: 38–42

    CAS  Google Scholar 

  5. Jasty M, Maloney WJ, Bragdon CR et al (1990) Histomorphological studies of the long term skeletal response to well fixed cemented femoral components. J Bone Joint Surg 72A: 1220–1229

    PubMed  CAS  Google Scholar 

  6. Maloney WJ, Smith RL, Castro F et al (1993) Fibroblast response to metallic debris in vitro. Enzyme induction, cell proliferation and toxicity. J Bone Joint Surg 75A: 835–844

    PubMed  CAS  Google Scholar 

  7. Takagi M, Konttinen YT, Santavirta S et al (1994) Extracellular matrix metalloproteinases around loose total hip prostheses. Acta Orthop Scand 65: 281–286

    Article  PubMed  CAS  Google Scholar 

  8. Kim KJ, Rubash H, Wilson SC et al (1993) A histologic and biochemical comparison of the interface tissues in cementless and cemented hip prostheses. Clin Orthop 287: 142–152

    Google Scholar 

  9. Santavirta S, Sorsa T, Konttinen YT et al (1993) Role of mesenchymal collagenase in the loosening of total hip prostheses. Clin Orthop 290: 206–215

    PubMed  Google Scholar 

  10. Takagi M, Konttinen YT, Santavirta S et al (1995) Cathepsin G and alpha-1 antichymotrypsin in the local host reaction to loosening of total hip prostheses. J Bone Joint Surg 77A: 16–25

    PubMed  CAS  Google Scholar 

  11. Takagi M, Konttinen YT, Santavirta S et al (1995) Elastase activity, uninhibited by alpha-1 antitrypsin, in the periprosthetic connective tissue matrix around total hip prostheses. J Orthop Res 13: 296–304

    Article  PubMed  CAS  Google Scholar 

  12. Takagi M (1996) Neutral proteinases and their inhibitors in the loosening of total hip prostheses (review). Acta Orthop Scand 67 (Suppl 271): 1–29

    Google Scholar 

  13. Werb Z (1989) Proteinases and matrix degradation. In: Kelly WB, Harris ED Jr, Rubby S, Sledge CB (eds) Textbook of rheumatology, 3rd edn. Saunders, Philadelphia, pp 300–321

    Google Scholar 

  14. Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5: 2145–2154

    Google Scholar 

  15. Sato H, Seiki M (1993) Regulatory mechanism of 92kD type IV collagenases gene expression which is associated with invasiveness of tumor cells. Oncogene 8: 395–405

    PubMed  CAS  Google Scholar 

  16. Birkedal-Hansen H, Moore WGI, Bodden MK et al (1993) Matrix metalloproteinases: a review. Grit Rev Oral Biol Med 4: 197–250

    CAS  Google Scholar 

  17. Okada Y, Enghlid JJ, Nagase H (1989) Immunolocalization of matrix metalloproteinase 3 (Stromelysin) in rheumatoid synovioblast (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis 48: 6545–6553

    Article  Google Scholar 

  18. Lindy O, Konttinen YT, Sorsa T et al (1997) Matrix metalloproteinase 13 (collagenase 3) in human rheumatoid synovium. Arthritis Rheum 40: 1391–1399

    Article  PubMed  CAS  Google Scholar 

  19. Birkedal-Hansen H (1993) Role of matrix metalloproteinases in human periodontal disease. J Periodontol 64: 474–484

    PubMed  CAS  Google Scholar 

  20. Nagase H (1997) Activation mechanism of matrix metalloproteinases (review). Biol Chem 378: 151–160

    PubMed  CAS  Google Scholar 

  21. Wilhelm SM, Collier IE, Marmer BL et al (1989) SV 40-transformed human lung fibroblasts secrete a 92 kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 26: 17213–17221

    Google Scholar 

  22. Sato H, Takino T, Okada Y et al (1994) A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370: 61–65

    Article  PubMed  CAS  Google Scholar 

  23. Pei D, Weiss SJ (1994) Transmembrane-deletion mutants of the membrane type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix degrading activity. J Biol Chem 271: 9135–9140

    Google Scholar 

  24. Strongin AY, Collier I, Bannikov G et al (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloproteinase. J Biol Chem 270: 5331–5338

    Google Scholar 

  25. Knäuper V, Will H, Lopez-Otin C et al (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem 271: 17124–17131

    Article  PubMed  Google Scholar 

  26. Ohuchi E, Imai K, Fujii Y et al (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other exracellular matrix mollecules. J Biol Chem 272: 2446–2451

    Article  PubMed  CAS  Google Scholar 

  27. Aimes RT, Quigley JP (1995) Matrix metalloproteinase-2 is an interstitial collagenase. J Biol Chem 270: 5872–5876

    Article  PubMed  CAS  Google Scholar 

  28. Stricklin GP, Welgus HG (1983) Human skin fibroblast collagenase inhibitor. Purification and biochemical characterization. J Biol Chem 258: 12252–12258

    PubMed  CAS  Google Scholar 

  29. Goldberg GI, Marmer BL, Grant GA et al (1989) Human 72kDa type IV collagenase forms a complex with a tissue inhibitor of metalloproteinases designated TIMP-2. Proc Natl Acad Sci USA 86: 8207–8211

    Article  PubMed  CAS  Google Scholar 

  30. Apte SS, Olsen BR, Murphy G (1995) The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem 270: 14313–14318.

    Article  PubMed  CAS  Google Scholar 

  31. Wick M, Burger C, Brusselbach S et al (1994) A novel member of human tissue inhibitor of metalloproteinase (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation and senescence. J Biol Chem 269: 18953–18960

    PubMed  CAS  Google Scholar 

  32. Liu YE, Wang M, Greene J et al (1997) Preparation and characterization of recombinant tissue inhibitor of metalloproteinases 4 (TIMP-4). J Biol Chem 272: 20479–20483

    Article  PubMed  CAS  Google Scholar 

  33. Takagi M, Konttinen YT, Kemppinen P et al (1995) Tissue inhibitor of matrix metalloproteinases-1 and collageno-and gelatinolytic potential in loose THR endoprostheses. J Rheumatol 22: 2285–2290

    PubMed  CAS  Google Scholar 

  34. Takagi M, Santavirta S, Ida H et al (1998) The membrane type matrix metalloproteinases/matrix metalloproteinase-2/tissue inhibitor of metalloproteinase-2 system in periprosthetic connective tissue remodeling in loose total hip prostheses. Lab Invest 78: 735–742

    PubMed  CAS  Google Scholar 

  35. Takagi M, Konttinen YT, Lindy O et al (1994) Gelatinase/type IV collagenases in the loosening of total hip replacement endoprosthesis. Clin Orthop 306: 136–144

    PubMed  Google Scholar 

  36. Takagi M, Santavirta S, Konttinen YT et al (1994) Proteolytic potential of matrix metalloproteinases and serine proteinases in the host response to THR endoprostheses. In: Andersson H, Happonen RP (eds) Bioceramics 7. Butterworth-Heimann, Oxford, pp 311–316

    Google Scholar 

  37. Ishiguro N, Ito T, Kurokouchi K et al (1996) mRNA expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in interface tissue around implants in loosening total hip arthroplasty. J Biomed Mater Res 32: 61 1617

    Google Scholar 

  38. Yokohama Y, Matsumoto T, Hirakawa M et al (1995) Production of matrix metalloproteinases at the bone-implant interface in loose total hip replacements. Lab Invest 72: 899–911

    Google Scholar 

  39. Väänänen HK (1993) Mechanism of bone turnover. Ann Med 25: 353–359

    Article  PubMed  Google Scholar 

  40. Laitala T, Väänänen HK (1994) Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H -ATP ase. J Clin Invest 93: 2311–2318

    Article  PubMed  CAS  Google Scholar 

  41. Drake FH, Dodds RA, James IE et al (1996) Cathepsin K, but not cathepsin B, L, or S, is abundantly expressed in human osteoclast. J Biol Chem 271: 12511–12516

    Article  PubMed  CAS  Google Scholar 

  42. Gelb BD, Shi GP, Chapman HA et al (1996) Pychnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273: 1236–1238

    Article  PubMed  CAS  Google Scholar 

  43. Hill PA, Murphy G, Docherty AJ et al (1994) The effects of selective inhibitors of matrix metalloproteinases (MMPs) on bone resorption and the identification of MMPs and TIMP-1 in isolated osteoclasts. J Cell Sci 107: 3055–3064

    PubMed  CAS  Google Scholar 

  44. Chambers TJ, Darby JA, Fuller K (1985) Mammalian collagenase predisposes bone surface to osteoclastic bone resorption. Cell Tissue Res 241: 671–675

    Article  PubMed  CAS  Google Scholar 

  45. Tezuka K, Nemoto K, Tezuka Yet al (1994) Identification of matrix metalloproteinase 9 in rabbit osteoclast. J Biol Chem 269: 15006–15009

    PubMed  CAS  Google Scholar 

  46. Holliday LS, Welgus HG, Fliszar C et al (1997) Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem 272: 22053–22058

    Article  PubMed  CAS  Google Scholar 

  47. Harris WH, Schiller AL, Scholler JM et al (1976) Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg 58-A: 612–618

    Google Scholar 

  48. Howie DW, Haynes DR, Rogers SD et al (1993) The response to particulate debris (review). Orthop Clin North Am 24: 571–581

    PubMed  CAS  Google Scholar 

  49. Jiraneck WA, Machado M, Jasty M et al (1993) Production of cytokines around loosened cemented acetabular components. J Bone Joint Surg 75-A: 863–879

    Google Scholar 

  50. Horowitz SM, Doty SB, Lane JM et al (1993) Studies of the mechanism by which the mechanical failure of polymethylmethacrylate leads to bone resorption. J Bone Joint Surg 75-A: 802–813

    Google Scholar 

  51. Haynes DR, Rogers SD, Hay S et al (1993) The differences in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J Bone Joint Surg 75-A: 825–834

    Google Scholar 

  52. Konttinen YT, Xu J-W, Pätiälä H et al (1997) Cytokines in aseptic loosening of total hip replacement. Curr Orthop 11: 40–47

    Article  Google Scholar 

  53. Hukkanen M, Corbeit SA, Batten J et al (1997) Aseptic loosening of total hip replacement: macrophage expression of inducible nitric oxide synthase and cyclo-oxygenase2, together with peroxynitrite formation, as a possible mechanism for early prosthesis failure. J Bone Joint Surg 79-B: 467–474

    Article  CAS  Google Scholar 

  54. Imai S, Konttinen YT, Jumppanen et al (1998) High level of expression of collagenase3 (MMP-13) in pathological conditions associated to a foreign body reaction. J Bone Joint Surg 80-B: 701–710

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Tokyo

About this paper

Cite this paper

Takagi, M. et al. (1999). Biological Role of Matrix Metalloproteinases and the Endogenous Inhibitor Proteins in the Periprosthetic Connective Tissue Remodeling Around Loose Artificial Hip Joints. In: Imura, S., Wada, M., Omori, H. (eds) Joint Arthroplasty. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68529-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68529-6_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68531-9

  • Online ISBN: 978-4-431-68529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics