Skip to main content

Development of Quantitative Magnetic Resonance Imaging for Assessment of Cartilage Damage and Repair in Vivo

  • Conference paper
Advances in Osteoarthritis

Summary

This chapter describes the computerized analysis of quantitative magnetic resonance (MR) parameters of water protons within articular cartilage. Those parameters were found to be consistently within a defined range for normal healthy cartilage and altered in a reproducible manner when the cartilage was fibrillated or the matrix degraded. T1 and T2 relaxation rates and magnetization transfer characteristics (T1sat and Msat/M0) of water in distal interphalangeal (DIP) joints were analyzed from a set of MR images acquired in vivo with a total scan time of 35 min, slice thickness of 1.5 mm, and resolution of 150µm2. A significant two- to threefold increase in the T2 and Msat/M0 ratio was found in DIP cartilage from asymptomatic volunteers compared to patients with nodal osteoarthritis. A similar increase was identified in 3-mm-diameter, full-depth biopsy samples from osteoarthritic (OA) femoral cartilage representative of different stages in cartilage degeneration compared to values obtained from processing images of the knee of normal volunteers with a slice thickness of 2 mm and resolution of 600µm2. This technology therefore provides an objective and quantitative means of identifying and monitoring cartilage degradation and repair within joints in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunziker EB (1992) Articular cartilage structure in humans and experimental animals. In: Kuettner KE, Schleyerbach R, Peyron JG, et al (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 183–189

    Google Scholar 

  2. Ghadially FN, Thomas I, Oryschak AF, et al (1977) Long term results of superficial defects in articular cartilage: a scanning electron microscope study, J Pathol 121:213–217

    Article  PubMed  CAS  Google Scholar 

  3. Charnley J, Cupic Z (1973) The nine and ten year results of low friction arthroplasty of the hip. Clin Orthop 95:9–13

    PubMed  Google Scholar 

  4. Chandler HP, Resnick FT, Wilson RL (1981) Total hip replacement in patients who are under the age of 30 at the time of arthroplasty. A five year follow up study. J Bone Joint Surg 63A:9–12

    Google Scholar 

  5. Tyler JA, Hunziker EB (1997) Articular cartilage regeneration. In: Lohmander S, Brandt K, Doherty M (eds) Osteoarthritis. Oxford University Press, Oxford, pp 101–118

    Google Scholar 

  6. Bentley G, Greer A (1971) Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature (Lond) 230:385–388

    Article  CAS  Google Scholar 

  7. Itay S, Abramovici A, Nevo Z (1987) Use of cultured embryonal chick epiphyseal chondrocytes as grafts for defects in chick articular cartilage. Clin Orthop 220:284–303

    PubMed  Google Scholar 

  8. Grande DA, Pitman MI, Peterson L, et al (1987) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7:208–218

    Article  Google Scholar 

  9. Wakitani S, Kimura T, Hirocka A, et al (1989) Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg [Br] 71(l):74–80

    CAS  Google Scholar 

  10. Brittberg M, Lindahl A, Nilsson A, et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  PubMed  CAS  Google Scholar 

  11. Sams AE, Nixon AJ (1995) Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartil 3:47–59

    Article  CAS  Google Scholar 

  12. Benayahu D, Kletter Y, Zipori D, et al (1989) Bone marrow derived stromal cell line expresses osteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physiol 140:1–7

    Article  PubMed  CAS  Google Scholar 

  13. Haynesworth SE, Goshima J, Goldberg VM, et al (1992) Characterisation of cells with osteogenic potential from human marrow Bone (NY) 13:81–88

    CAS  Google Scholar 

  14. Wakitani S, Goto T, Pineda SJ, et al (1994) Mesenchymal cell-based repair of large full-thickness defects of articular cartilage. J Bone Joint Surg 76A:579–592

    Google Scholar 

  15. Hunziker EB, Rosenberg LC (1995) Repair of partial thickness articular cartilage defects. Cell recruitment from the synovium. J Bone Joint Surg 78A:721–733

    Google Scholar 

  16. Hunziker EB, Shenk RK (1995) A differential treatment protocol for inducing cartilage and bone repair in full-thickness articular cartilage defects. Trans Orthop Res Soc 20:170

    Google Scholar 

  17. Johnson LL (1990) The sclerotic lesion: pathology and the clinical response to arthroscopic abrasion arthroplasty. In: Ewing JE (ed) Articular cartilage and knee joint function. Basic science and arthroscopy. Raven Press, New York, pp 319–333

    Google Scholar 

  18. Childers ECJ, Ellwood SC (1979) Partial chondrectomy and subchondral bone drilling for chondromalacia. Clin Orthop 144:114–120

    PubMed  Google Scholar 

  19. Insall J (1974) The Pridie debridement operation for osteoarthritis of the knee. Clin Orthop 32-B(3):302–367

    Google Scholar 

  20. Matsusue Y, Yamamuro T, Hama H (1993) Case report: arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9:318–321

    Article  PubMed  CAS  Google Scholar 

  21. Bobic V (1996) Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrose 3:262–264

    Article  CAS  Google Scholar 

  22. Edelman RR, Kleefield J, Wentz KU, et al (1990) Basic principles of magnetic resonance imaging. In: Edelman RR, Hesselink JR (eds) Clinical magnetic resonance imaging. Saunders, Philadelphia, pp 3–38

    Google Scholar 

  23. Karvonen RL, Negendank WG, Tietge RA, et al (1994) Factors affecting articular cartilage thickness in osteoarthritis and ageing. J Rheumatol 21:1310–1318

    PubMed  CAS  Google Scholar 

  24. Peterfy CG, van Dijke SV, Janzen EL, et al (1994) Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fast-suppressed MR imaging: optimisation and validation. Radiology 192:485–491

    PubMed  CAS  Google Scholar 

  25. Pilch L, Stewart C, Gordon D, et al (1994) Assessment of cartilage volume in femoro-tibial joints with magnetic resonance imaging and 3D computer reconstruction. J Rheumatol 21:2370–2379

    Google Scholar 

  26. Eckstein F, Sittek H, Milz S (1995) The potential of magnetic resonance imaging (MRI) for quantifying articular cartilage thickness: a methodological study. Clin Biomech 10:434–440

    Article  Google Scholar 

  27. Robson MD, Hodgson RJ, Herrod NJ, et al (1995) A combined analysis and magnetic resonance imaging technique for computerized automatic measurement of cartilage thickness in the distal interphalangeal joint. Magn Reson Imaging 13:709–718

    Article  PubMed  CAS  Google Scholar 

  28. Eckstein F, Gavazzeni A, Sittak H (1996) Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry. Magn Reson Med 36:256–265

    Article  PubMed  CAS  Google Scholar 

  29. Kladny B, Bail H, Swonoda C, et al (1996) Cartilage thickness measurement in magnetic resonance imaging. Osteoarthritis Cartil 4:181–186

    Article  CAS  Google Scholar 

  30. Sittek H, Eckstein F, Gavazzeni A, et al (1996) Assessment of normal patellar cartilage volume and thickness using MRI: an analysis of currently available pulse sequences. Skeletal Radiol 25:55–62

    Article  PubMed  CAS  Google Scholar 

  31. Losch A, Eckstein F, Haubner M, et al (1997) A non-invasive technique for assessment of articular cartilage thickness based on MRI. Part 1: method. Development of a computational method. Magn Reson Imaging 15(7):795–804

    Article  PubMed  CAS  Google Scholar 

  32. Haubner M, Eckstein F, Schnier M, et al (1997) A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MTI. Part 2: Validation using arthrography. Magn Reson Imaging 15(7):805–813

    Article  PubMed  CAS  Google Scholar 

  33. Racht MP, Kramer JS, Marcelis S, et al (1993) Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 187:473–478

    Google Scholar 

  34. Disler DG, McCauley TR, Kelman CG (1996) Fat-suppressed three dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR 167:127–132

    PubMed  CAS  Google Scholar 

  35. Gahunia HK, Lemaire C, Babyn PS, et al (1995) Osteoarthritis in rhesus macaque knee joint: quantitative magnetic resonance imaging, tissue characterisation of articular cartilage. J Rheumatol 22(9):1747–1755

    PubMed  CAS  Google Scholar 

  36. Watson PJ, Carpenter TA, Hall LD, et al (1996) Cartilage swelling and loss in a spontaneous model of osteoarthritis visualised by magnetic resonance imaging. Osteoarthritis Cartil 4:197–207

    Article  CAS  Google Scholar 

  37. Tyler JA, Watson PJ, Koh W-L, et al (1996) Detection and monitoring of progressive degeneration of osteoarthritic cartilage by MRI. Acta Orthop Scand 66:130–138

    Google Scholar 

  38. Wilson D, Paul PK, Roberts ED, et al (1993) Magnetic resonance imaging and morphometric quantitation of cartilage histology after chronic infusion of interleukin 1 in rabbit knees. Proc Soc Exp Biol Med 203(l):30–37

    PubMed  CAS  Google Scholar 

  39. Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR: introduction to theory and methods. Academic Press, London

    Google Scholar 

  40. Homans SW (1989) A dictionary of concepts in NMR. Clarendon Press, Oxford

    Google Scholar 

  41. Callaghan PT (1987) Principles of nuclear magnetism. Oxford University Press, Oxford

    Google Scholar 

  42. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144

    Article  PubMed  CAS  Google Scholar 

  43. Grad J, Mendelson D, Hyder F, et al (1991) Applications of nuclear magnetic cross-relaxation spectroscopy to tissues. J Magn Res 17:452–459

    Article  CAS  Google Scholar 

  44. Tessier J, Potter K, Carpenter TA, et al (1994) Demonstration of the linear dependence of proton magnetisation transfer on polymer concentration in aqueous gels. Magn Reson Chem 32:55–61

    Article  CAS  Google Scholar 

  45. Kim DK, Ceckler TI, Hascall VC, et al (1993) Analysis of water-macromolecule proton magnetisation transfer in articular cartilage. Magn Reson Med 29:211–215

    Article  PubMed  CAS  Google Scholar 

  46. Lesperance LM, Gray ML, Burnstein D (1993) Effect of collagen concentration and structure on MT in hydrated collagen and cartilage. Soc Magn Reson Med 3:1107–1110

    Google Scholar 

  47. Xia Y, Farquhar T, Burton-Wurster N, et al (1994) Diffusion and relaxation mapping of cartilage-bone plugs and excised disks using microscopic magnetic resonance imaging. Magn Reson Med 31:273–282

    Article  PubMed  CAS  Google Scholar 

  48. Bernstein D, Gray ML, Hartman AL, et al (1993) Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res 11:456–478

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Tokyo

About this paper

Cite this paper

Tyler, J.A., Hall, L.D., Watson, P.J. (1999). Development of Quantitative Magnetic Resonance Imaging for Assessment of Cartilage Damage and Repair in Vivo. In: Tanaka, S., Hamanishi, C. (eds) Advances in Osteoarthritis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68497-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68497-8_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68499-2

  • Online ISBN: 978-4-431-68497-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics