Skip to main content

Physical Diagnostics of Cartilage Degeneration

  • Conference paper
Advances in Osteoarthritis

Summary

We have focused on a new technology for nondestructive measurement of electrical and mechanical properties of articular cartilage via electrodes placed on the tissue surface. The long-term goal of this research is to enable detection of early stages of cartilage degradation based on the sensitivity of cartilage electromechanical properties to damage of the aggrecan-collagen network and loss of the highly charged aggrecan molecules. Ultimately, this technique may find application in early in vivo detection of cartilage degradation via arthroscopy. Experimental and theoretical results [1,2] have shown that an electric current applied to the articular surface of cartilage will produce a current-generated mechanical stress within the bulk of the tissue, via electrokinetic mechanisms, measurable at the surface. Based on this principle, a surface probe has been developed containing electrodes for applying current to the cartilage surface and an overlying piezoelectric sensor for measuring the resulting stress. Small sinusoidal currents applied to cartilage produce sinusoidal surface stresses at the same frequency. Such responses have been observed using disks of bovine articular cartilage, cartilage on intact bovine knee joint surfaces, and, recently, in preliminary in vivo studies in a canine knee joint model. The frequency response of the current-generated stress was found to agree well with trends predicted by poroelastic theory [1]. Because the depth to which current penetrates into the tissue is proportional to the imposed spatial wavelength (twice the electrode spacing), we have developed a multiple wavelength probe to test the possibility that measurement using multiple wavelengths and frequencies could be used to image depth-dependent partial thickness degradation, as occurs in early osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sachs JR, Grodzinsky AJ (1989) An electromechanically coupled poroelastic medium driven by an applied electric current: surface detection of bulk material properties. Phys-Chem Hydrodyn 11:585–614

    CAS  Google Scholar 

  2. Berkenblit SI, Frank EH, Salant EP, Grodzinsky AJ (1994) Nondestructive detection of cartilage degeneration using electromechanical surface spectroscopy. J Biomech Eng 116:384–392

    Article  PubMed  CAS  Google Scholar 

  3. Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ (eds) (1992) Osteoarthritis: diagnosis and medical/surgical management, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  4. Hall LD, Watson PJ, Tyler JA (1997) Magnetic resonance imaging and the progression of osteoarthritis, osteoporosis and aging. In: Osteoarthritis: public health implications for an aging population. Johns Hopkins University Press, Baltimore

    Google Scholar 

  5. Dieppe P (1995) The classification and diagnosis of osteoarthritis. In: Osteoar-thritic disorders. American Academy of Orthopaedic Surgeons, Rosemont, IL

    Google Scholar 

  6. Bashir A, Paley D, Davidson SA, Gray ML, Burstein D (1997) Mri measurements of fixed charge density as a measure of cartilage proteoglycan content. In: Transactions of the 43rd annual meeting, vol 22. Orthopaedic Research Society, San Francisco, CA, p 217

    Google Scholar 

  7. Mink JH, Reicher MA, Crues JV III (1992) Magnetic resonance imaging of the knee. Raven, New York

    Google Scholar 

  8. Ewing JW (1990) Articular cartilage and knee joint function: basic science and arthroscopy. Raven, New York

    Google Scholar 

  9. Lohmander S (1993) Osteoarthritis: a major cause of disability of the elderly. In: Musculoskeletal soft-tissue aging: impact on mobility. American Academy of Orthopaedic Surgeons, Rosemont, IL

    Google Scholar 

  10. Sabiston CP, Adams ME, Li DKB (1987) Magnetic resonance imaging of osteoarthritis: correlation with gross pathology using an experimental model. J Orthop Res 5:164–172

    Article  PubMed  CAS  Google Scholar 

  11. Hamerman D (1997) Osteoarthritis: public health implications for an aging population. Johns Hopkins University Press, Baltimore

    Google Scholar 

  12. Cawston T (1993) Blocking cartilage destruction with metalloproteinase inhibitors: a valid therapeutic target? Ann Rheum Dis 52:769–770

    Article  PubMed  CAS  Google Scholar 

  13. Kuettner KE, Goldberg VM (1995) Osteoarthritic disorders. American Academy of Orthopaedic Surgeons, Rosemont, IL

    Google Scholar 

  14. Hoch DH, Grodzinsky AJ, Koob TJ, Albert ML, Eyre DR (1983) Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res 1:4–12

    Article  PubMed  CAS  Google Scholar 

  15. Frank EH, Grodzinsky AJ, Eyre DR, Koob TJ (1987) Streaming potential: a sensitive index of enzymatic degradation in articular cartilage. J Orthop Res 5:497–508

    Article  PubMed  CAS  Google Scholar 

  16. Frank EH, Grodzinsky AJ (1987) Cartilage electromechanics I: electrokinetic transduction and the effects of electrolyte pH and ionic strength. J Biomech 20:615–627

    Article  PubMed  CAS  Google Scholar 

  17. Frank EH, Grodzinsky AJ (1987) Cartilage electromechanics II: a continuum model of cartilage electrokinetics. J Biomech 20:629–639

    Article  PubMed  CAS  Google Scholar 

  18. Bonasser LJ, Sandy JD, Lark MW, Plaas AHK, Frank EH, Grodzinsky AJ (1997) Inhibition of cartilage degradation and changes in physical properties induced by IL-1β and retinoic acid using matrix metalloproteinases. Arch Biochem Biophys 334:404–412

    Article  Google Scholar 

  19. Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature (Lond) 260:808–809

    Article  CAS  Google Scholar 

  20. Maroudas A (1979) Physicochemical properties of articular cartilage. In: Adult articular cartilage. Pitman Medical, Kent, England, pp 215–290

    Google Scholar 

  21. Mow VC, Setton LA, Guilak F, Ratcliffe A (1995) Mechanical factors in articular cartilage and their role in osteoarthritis. In: Osteoarthritic disorders. American Academy of Orthopaedic Surgeons, Rosemont, IL

    Google Scholar 

  22. Tkaczuk H (1986) Human cartilage stiffness. In vivo studies. Clin Orthop 206:301–312

    Google Scholar 

  23. Dashefsky JH (1987) Arthroscopic measurement of chondromalacia of patella cartilage using a microminiature pressure transducer. Arthroscopy 3:80–85

    Article  PubMed  CAS  Google Scholar 

  24. Lyyra T, Jurvelin J, Pitkanen P, Väätäinen U, Kiviranta I (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 17:395–399

    Article  PubMed  CAS  Google Scholar 

  25. Kiviranta I, Lyyra T, Väätäinen U, Seuri R, Jeroma H, Tammi M, Jurvelin J (1995) Knee joint articular cartilage shows general softening in patients with chondromalacia of patella. In: Transactions of the 41st annual meeting, vol 20. Orthopaedi Research Society, Orlando, FL, p 197

    Google Scholar 

  26. Chang RW, Falconer J, Stulberg SD, Arnold WJ, Manheim LM, Dyer AR (1993) A randomized, controlled trial of arthroscopic surgery versus closed-needle joint lavage for patients with osteoarthritis of the knee. Arthritis Rheum 36:289–296

    Article  PubMed  CAS  Google Scholar 

  27. Bonassar LJ, Frank EH, Murray JC, Paguio CG, Moore VL, Lark MW, Sandy JD, Wu JJ, Eyre DR, Grodzinsky AJ (1995) Changes in cartilage composition and physical properties due to stromelysin degradation. Arthritis Rheum 38:173–183

    Article  PubMed  CAS  Google Scholar 

  28. Sachs JR, Grodzinsky AJ (1994) Theory of electromechanical spectroscopy in poroelastic media: surface detection of bulk properties. In: Transactions of the 16th International Conference, IEEE Engineering in Medicine and Biology Society, Baltimore, MD, pp 752–753

    Google Scholar 

  29. Grodzinsky AJ (1983) Electromechanical and physicochemical properties of connective tissues. CRC Crit Rev Biomed Eng 9:133–199

    CAS  Google Scholar 

  30. Grimshaw PE, Eisenberg SR, Grodzinsky AJ, Koob TJ, Eyre DR (1983) The kinetics of in vitro neutralization and enzymatic extraction of cartilage charge groups: characterization by isometric compressive stress. In: Transactions of the 29th Annual Meeting, vol 8. Orthopaedic Research Society, Anaheim, CA, p 122

    Google Scholar 

  31. Frank EH, Grodzinsky AJ, Philips SL, Grimshaw PE (1990) Physiochemical and bioelectric determinants of cartilage material properties. In: Biomechanics of diarthrodial joints. Springer, Heidelberg Berlin New York, p 147

    Google Scholar 

  32. Treppo S, Otterness IG, Malici AJ, Berkenblit SI, Grodzinsky AJ (1998) Effects of Mmp-1 and Mmp-13 induced matrix degradation on electrokinetic and dielectric properties of adult articular cartilage by surface spectroscopy. In: Transactions of the 45th Annual Meeting, vol 23. Orthopaedic Research Society, New Orleans, LA, p 153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Tokyo

About this paper

Cite this paper

Treppo, S., Berkenblit, S.I., Bombard, D.L., Frank, E.H., Grodzinsky, A.J. (1999). Physical Diagnostics of Cartilage Degeneration. In: Tanaka, S., Hamanishi, C. (eds) Advances in Osteoarthritis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68497-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68497-8_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68499-2

  • Online ISBN: 978-4-431-68497-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics