Skip to main content

Regulatory Mechanism of NHE1 Isoform of Na+/H+ Exchanger in Cardiac and Other Tissues

  • Chapter
  • 64 Accesses

Summary

Regulation of intracellular pH and cell volume is essential for the normal function of a cell. The Na+/H+ exchanger in the plasma membrane plays a major role in both functions by extruding cytoplasmic H+ in exchange for extracellular Na+. In cardiomyocytes, in which protons are continuously produced by high metabolic activity, elucidation of the regulatory mechanism of the Na+/H+ exchanger is particularly important, because intracellular pH is a key modulator of contractility and because the transporter plays a critical role in cardiac pathophysiology such as ischemia/reperfusion-associated cell injury. In these cells, the ubiquitous form (NHE1) of the transporter is predominantly expressed and its activity presumably is under the regulatory influence of a variety of extracellular and intracellular factors including many receptor agonists, osmotic stress, and cell ATP level, as in other cell types. Recent advances in the molecular mechanism of short-term regulation of NHE1 by these factors and its pathophysiological relevance are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reimer KA, Jenning RB (1986) Myocardial ischemia, hypoxia, and infarction. In: Fozzard HA, Harber E, Jennings RB, Katz AM (eds) The heart and cardiovascular system. Scientific foundations. Raven, New York, pp 1133–1201

    Google Scholar 

  2. Orchard CH, Kentish JC (1990) Effects of changes in pH on the contractile function of cardiac muscle. Am J Physiol 258:C967–C981

    PubMed  CAS  Google Scholar 

  3. Lazdunsky M, Freiin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042

    Article  Google Scholar 

  4. Lagadic-Gossmann D, Buckler KJ, Vaughan-Jones RD (1992) Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocytes. J Physiol (Lond) 458:361–384

    CAS  Google Scholar 

  5. Lagadic-Gossmann D, Vaughan-Jones RD, Buckler KJ (1992) Adrenaline and extracellular ATP switch between two modes of acid extrusion in the guinea-pig ventricular myocyte. J Physiol (Lond) 458:385–407

    CAS  Google Scholar 

  6. Wakabayashi S, Shigekawa M, Pouysségur J (1997) Molecular physiology of vertebrate Na+/H+ exchanger. Physiol Rev 77:51–74

    PubMed  CAS  Google Scholar 

  7. Sardet C, Franchi A, Pouysségur J (1989) Molecular cloning, primary structure and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56:271–280

    Article  PubMed  CAS  Google Scholar 

  8. Fliegel L, Dyck JRB, Wang H, Fong C, Haworth RS (1993) Cloning and analysis of the human myocardial Na+/H+ exchanger. Mol Cell Biochem 125:137–143

    Article  PubMed  CAS  Google Scholar 

  9. Krämer BK, Smith TW, Kelly RA (1991) Endothelin and increased contractility in adult rat ventricular myocytes: role of intracellular alkalosis induced by activation of the protein kinase C-dependent Na+-H+ exchanger. Circ Res 68:269–279

    PubMed  Google Scholar 

  10. Pucéat M, Vassort G (1995) Neurohumoral modulation of intracellular pH in the heart. Cardiovasc Res 29:178–183

    PubMed  Google Scholar 

  11. Yasutake M, Haworth RS, King A, Avikiran M (1996) Thrombin activates the sarcolemmal Na+-H+ exchanger. Evidence for a receptor-mediated mechanism involving protein kinase C. Circ Res 79:705–715

    PubMed  CAS  Google Scholar 

  12. Ito N, Kagaya Y, Weinberg EO, Barry WH, Lorell BH (1997) Endothelin and angiotensin II stimulation of Na+-H+ exchange is impaired in cardiac hypertrophy. J Clin Invest 99:125–135

    Article  PubMed  CAS  Google Scholar 

  13. MacLeod KT, Harding SE (1991) Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes. J Physiol (Lond) 444:481–498

    CAS  Google Scholar 

  14. Schömig A, Kurtz T, Richardt G, Schömig E (1990) The role of catecholamines in ischemia. J Cardiovasc Pharmacol 16:S105–S112

    PubMed  Google Scholar 

  15. Pierce GN, Czubryt MP (1995) The contribution of ionic imbalance to ischemia/ reperfusion-induced injury. J Mol Cell Cardiol 27:53–63

    Article  PubMed  CAS  Google Scholar 

  16. Garcia-Doarado D, Oliveras J (1993) Myocardial edema: a preventable cause of reperfusion injury. Cardiovasc Res 27:1555–1563

    Article  Google Scholar 

  17. Scholtz W, Albus U (1995) Potential of selective sodium-hydrogen exchange inhibitors in cardiovascular therapy. Cardiovasc Res 125:137–143

    Google Scholar 

  18. Aronson PS, Nee J, Suhm MA (1982) Modifier role of internal Na+ inactivating the Na+/H+ exchanger in renal microvillus membrane vesicles. Nature (Lond) 299:161–163

    Article  CAS  Google Scholar 

  19. Matsuoka S, Nicoll DA, Hryshko LV, Levitsky DO, Weiss JN, Philipson KD (1995) Na+-Ca2+ exchanger by Ca2+. Mutational analysis of the Ca2+-binding domain. J Gen Physiol 105:403–420

    Article  PubMed  CAS  Google Scholar 

  20. Levitsky DO, Nicoll DA, Philipson KD (1994) Identification of the high affinity Ca2+-binding domain of the cardiac Na+-Ca2+ exchanger. J Biol Chem 269:22847–22852

    PubMed  CAS  Google Scholar 

  21. Grinstein S, Rotin D, Mason MJ (1989) Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochem Biophys Acta 988:73–97

    PubMed  CAS  Google Scholar 

  22. Villereal ML (1981) Sodium fluxes in human fibroblasts: effect of serum, Ca2+, and amiloride. J Cell Physiol 107:359–369

    Article  PubMed  CAS  Google Scholar 

  23. Gupta A, Schwiening CJ, Boron WF (1994) Effects of CGRP, forskolin, PMA, and ionomycin on pHi dependence of Na-H exchange in UMR-106 cells. Am J Physiol 266:C1083–C1092

    CAS  Google Scholar 

  24. Wakabayashi S, Bertrand B, Ikeda T, Pouysségur J, Shigekawa M (1994) Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H+-sensitive and Ca2+ regulation-defective. J Biol Chem 269:13710–13715

    PubMed  CAS  Google Scholar 

  25. Dascalu A, Nevo A, Korenstein R (1992) Hyperosmotic activation of the Na+/H+ exchanger in a rat bone cell line: temperature dependence and activation pathways. J Physiol (Lond) 456:503–518

    CAS  Google Scholar 

  26. Shrode LD, Klein JD, O’Neill WC, Putnam RW (1995) Shrinkage-induced activation of Na+/H+ exchange in primary rat astrocytes: role of myosin light-chain kinase. Am J Physiol 269:C257–C266

    PubMed  CAS  Google Scholar 

  27. Bertrand B, Wakabayashi S, Ikeda T, Pouysségur J, Shigekawa M (1994) The Na+/ H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. J Biol Chem 269:13703–13709

    PubMed  CAS  Google Scholar 

  28. Wakabayashi S, Ikeda T, Iwamoto T, Pouysségur J, Shigekawa M (1997) Calmodulin-binding autoinhibitory domain controls “pH-sensing” in the Na+/H+ exchanger NHE1 through sequence-specific interaction. Biochemistry 36:12854–12861

    Article  PubMed  CAS  Google Scholar 

  29. Wöll E, Ritter M, Scholz W, Heussinger D, Lang F (1993) The role of calcium in cell shrinkage and intracellular alkalinization by bradykinin in Ha-ras oncogene expressing cells. FEBS Lett 322:261–265

    Article  PubMed  Google Scholar 

  30. Fukushima T, Waddell TK, Grinstein S, Goss GG, Orlowski J, Downey GP (1996) Na+/H+ exchange activity during phagocytosis in human neutrophils: role of Fcr receptors and tyrosine kinases. J Cell Biol 132:1037–1052

    Article  PubMed  CAS  Google Scholar 

  31. Sardet C, Fafournoux P, Pouysségur J (1991) α-Thrombin, epidermal growth factor, and okadaic acid activate the Na+/H+ exchanger, NHE-1, by phosphorylating a set of common sites. J Biol Chem 266:19166–19171

    PubMed  CAS  Google Scholar 

  32. Hooley R, Yu CY, Symons M, Barber DL (1996) G13 stimulates Na+-H+ exchange through distinct Cdc42-dependent and RhoA-dependent pathways. J Biol Chem 271:6152–6158

    Article  PubMed  CAS  Google Scholar 

  33. Aharonovitz O, Granot Y (1996) Stimulation of mytogen-activated protein kinase and Na+/H+ exchanger in human platelets. Differential effect of phorbol ester and vasopressin. J Biol Chem 271:16494–16499

    Article  PubMed  CAS  Google Scholar 

  34. Bianchini L, L’Allemain G, Pouysségur J (1997) The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors. J Biol Chem 272:271–279

    Article  PubMed  CAS  Google Scholar 

  35. Kolch W, Hidecker G, Lioyd P, Rapp UR (1991) Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349:426–428

    Article  PubMed  CAS  Google Scholar 

  36. Dhanasekaran N, Vara Prasad MBVS, Wadsworth SJ, Dermott JM, Van Rossum G (1994) Protein kinase C-dependent and independent activation of Na+/H+ exchanger by Gα12 class of G proteins. J Biol Chem 269:11802–11806

    PubMed  CAS  Google Scholar 

  37. Voyno-Yasenetskaya T, Conklin BR, Gilbert RL, Hooley R, Bourne HR, Barber DL (1994) Gα13 stimulates Na-H exchange. J Biol Chem 269:4721–4724

    PubMed  CAS  Google Scholar 

  38. Krump E, Nikitas K, Grinstein S (1997) Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J Biol Chem 272:17303–17311

    Article  PubMed  CAS  Google Scholar 

  39. Azarani A, Orlowski J, Goltzman D (1995) Parathyroid hormone and parathyroid hormone-related peptide activate the Na+/H+ exchanger NHE-1 isoform in osteoblastic cells (URM-106) via a cAMP-dependent pathway. J Biol Chem 270:23166–23172

    Article  PubMed  CAS  Google Scholar 

  40. Kandasamy RK, Yu FH, Harris R, Boucher A, Hanrahan JW, Orlowski J (1995) Plasma membrane Na+/H+ exchanger isoforms (NHE-1,-2, and-3) are differentially responsive to second messenger agonists of the protein kinase A and C pathways. J Biol Chem 270:29209–29216

    Article  PubMed  CAS  Google Scholar 

  41. Wu M-L, Vaughan-Jones RD (1994) Effect of metabolic inhibitors and second messengers upon Na+-H+ exchange in the sheep cardiac Purkinje fibre. J Physiol (Lond) 478:301–313

    CAS  Google Scholar 

  42. Wakabayashi S, Bertrand B, Shigekawa M, Fafournoux P, Pouysségur J (1994) Growth factor activation and “H+-sensing” of the Na+/H+ exchanger isoform 1 (NHE1). Evidence for an additional mechanism not requiring direct phosphorylation. J Biol Chem 269:5583–5588

    PubMed  CAS  Google Scholar 

  43. Wakabayashi S, Fafournoux P, Sardet C, Pouysségur J (1992) The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H+-sensing”. Proc Natl Acad Sci USA 89:2424–2428

    Article  PubMed  CAS  Google Scholar 

  44. Lin X, Barber DL (1996) A calcineurin homologous protein inhibits GTPasestimulated Na-H exchange. Proc Natl Acad Sci USA 93:12631–12636

    Article  PubMed  CAS  Google Scholar 

  45. Grinstein S, Woodside M, Sardet C, Pouysségur J, Rotin D (1992) Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylationindependent mechanism. J Biol Chem 267:23823–23828

    PubMed  CAS  Google Scholar 

  46. Cassel D, Katz M, Rotman M (1986) Depletion of cellular ATP inhibits Na+/H+ antiport in cultured human cells. Modulation of the regulatory effect of intracellular protons on the antiport activity. J Biol Chem 261:5460–5466

    PubMed  CAS  Google Scholar 

  47. Ikeda T, Schmitt B, Pouysségur J, Wakabayashi S, Shigekawa M (1997) Identification of cytoplasmic subdomains that control pH-sensing of the Na+/H+ exchanger (NHE1): pH-maintenance, ATP-sensitive, and flexible loop domains. J Biochem (Tokyo) 121:295–303

    CAS  Google Scholar 

  48. Demaurex N, Romanek RR, Orlowski J, Grinstein S (1997) ATP dependence of Na+/H+ exchange. Nucleotide specificity and assessment of the role of phospholipids. J Gen Physiol 109:117–128

    Article  PubMed  CAS  Google Scholar 

  49. Goss GG, Woodside M, Wakabayashi S, Pouysségur J, Waddell T, Downey GP, Grinstein S (1994) ATP dependence of NHE-1, the ubiquitous isoform of the Na+/ H+ antiporter. Analysis of phosphorylation and subcellular localization. J Biol Chem 269:8741–8748

    PubMed  CAS  Google Scholar 

  50. Tsé M, Levine S, Yun C, Brant S, Counillon LT, Pouysségur J, Donowitz M (1993) Structure/function studies of the epithelial isoforms of the mammalian Na+/H+ exchanger gene family. J Membr Biol 135:93–108

    PubMed  Google Scholar 

  51. Horie S, Moe O, Miller RT, Alpern RJ (1992) Long-term activation of protein kinase C causes chronic Na/H antiporter stimulation in cultured proximal tubule cells. J Clin Invest 89:365–372

    Article  PubMed  CAS  Google Scholar 

  52. Krapf R, Pearce D, Lynch C, Xi X-P, Reudelhuber TL, Pouysségur J, Rector FC Jr (1991) Expression of rat renal Na/H antiporter mRNA levels in response to respiratory and metabolic acidosis. J Clin Invest 81:141–751

    Google Scholar 

  53. Rao GN, Sardet C, Pouysségur J, Berk BC (1990) Differential regulation of Na+/ H+ antiporter gene expression in vascular smooth muscle cells by hypertrophic and hyperplastic stimuli. J Biol Chem 265:19393–19396

    PubMed  CAS  Google Scholar 

  54. Rao GN, Sardet C, Pouysségur J, Berk BC (1992) Na+/H+ antiporter gene expression increases during retinoic acid-induced granulocytic differentiation of HL60 cells. J Cell Physiol 151:361–366

    Article  PubMed  CAS  Google Scholar 

  55. Dyck JRB, Maddaford TG, Pierce GN, Fliegel L (1995) Induction of expression of sodium-hydrogen exchanger in rat myocardium. Cardiovasc Res 29:203–208

    PubMed  CAS  Google Scholar 

  56. Takewaki S, Kuroo M, Hiroi Y, Yamazaki T, Noguchi T, Miyagishi A, Nakahara K, Aikawa M, Manabe I, Yazaki Y, Nagai R (1995) Activation of Na+-H+ antiporter (NHE-1) gene expression during growth, hypertrophy and proliferation of the rabbit cardiovascular system. J Mol Cell Cardiol 27:729–742

    Article  PubMed  CAS  Google Scholar 

  57. Haworth RS, Yasutake M, Brooks G, Avkiran M (1997) Cardiac Na+-H+ exchanger during postnatal development in the rat: changes in mRNA expression and sarcolemmal activity. J Mol Cell Cardiol 29:321–332

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Shigekawa, M., Ikeda, T., Iwamoto, T., Wakabayashi, S. (1998). Regulatory Mechanism of NHE1 Isoform of Na+/H+ Exchanger in Cardiac and Other Tissues. In: Abiko, Y., Karmazyn, M. (eds) Protection Against Ischemia/Reperfusion Damage of the Heart. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68482-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68482-4_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68484-8

  • Online ISBN: 978-4-431-68482-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics