Skip to main content

Cooperation of Two Quinone-Binding Sites in the Oxidation of Substrates by Cytochrome bo

  • Conference paper
Oxygen Homeostasis and Its Dynamics

Part of the book series: Keio University Symposia for Life Science and Medicine ((KEIO,volume 1))

  • 149 Accesses

Summary

Cytochrome bo is a terminal quinol oxidase of the aerobic respiratory chain of Escherichia coli and catalyzes not only the scalar protolytic reactions but also redox-coupled proton pumping. Structure-function studies of the quinol oxidation site (QL) using systematically selected quinone analogues, 1,4-benzoquinones, substituted phenols, and ubiquinone-2 derivatives revealed the structural features of the quinol oxidation site. We found further that bacterial quinol oxidases share common features of the quinol oxidation site irrespective of their structural similarities. In addition, we identified the presence of a tightly bound ubiquinone-8 (QH) and examined the possible roles of the QH site in the two-electron oxidation of substrates at the QL site and in mediating sequential one-electron transfer from QL to the low-spin heme b. Based on these observations, we discuss molecular mechanism of the substrate oxidation by cytochrome bo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anraku Y, Gennis RB (1987) The aerobic respiratory chain of Escherichia coli. Trends Biochem Sci 12: 262–266

    Article  CAS  Google Scholar 

  2. Saraste M (1990) Structural features of cytochrome oxidase. Q Rev Biophys 23: 331–336

    Article  PubMed  CAS  Google Scholar 

  3. Mogi T, Nakamura H, Anraku Y (1994) Molecular structure of a heme-copper redox center of the Escherichia coli ubiquinol oxidase: evidence and model. J Biochem (Tokyo) 116: 471–477

    CAS  Google Scholar 

  4. Garcia-Horsman JA, Barquera B, Rumbley J, et al. (1994) The superfamily of hemecopper respiratory oxidases. J Bacteriol 176: 5587–5600

    PubMed  CAS  Google Scholar 

  5. Iwata S, Ostermeier C, Ludwig B, et al. (1995) Structure at 2.8Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669

    Article  PubMed  CAS  Google Scholar 

  6. Tsukihara T, Aoyama H, Yamashita E, et al. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272: 1136–1144

    Article  PubMed  CAS  Google Scholar 

  7. Wilmanns M, Lappalainen P, Kelly M, et al. (1995) Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. Proc Natl Acad Sci USA 92: 11955–11959

    Article  PubMed  CAS  Google Scholar 

  8. Welter R, Gu LQ, Yu L, et al. (1994) Identification of the ubiquinol-binding site in the cytochrome boa-ubiquinol oxidase of Escherichia coli. J Biol Chem 269: 28834–28838

    PubMed  CAS  Google Scholar 

  9. Castresana J, Lübben M, Saraste M, et al. (1994) Evolution of cytochrome oxidase, an enzyme older than atomospheric oxygen. EMBO J 13: 2516–2525

    PubMed  CAS  Google Scholar 

  10. Kita K, Konishi K, Anraku Y (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b562-o complex from cells in the early exponential phase of aerobic growth. J Biol Chem 259: 3368–3374

    PubMed  CAS  Google Scholar 

  11. Matsushita K, Patel L, Kaback HR (1984) Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation. Biochemistry 23: 4703–4714

    Article  PubMed  CAS  Google Scholar 

  12. Meunier B, Madgwick SA, Reil E, et al. (1995) New inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd. Biochemistry 34: 1076–1083

    Article  PubMed  CAS  Google Scholar 

  13. Sato-Watanabe M, Mogi T, Miyoshi H, et al. (1994) Structure-function studies on the ubiquinol oxidation site of the cytochrome bo complex from Escherichia coli using pbenzoquinones and substituted phenols. J Biol Chem 269: 28899–28907

    PubMed  CAS  Google Scholar 

  14. Hansch C, Leo A (1979) In: Substituent constants for correlation analysis in chemistry and biology. Wiley, New York

    Google Scholar 

  15. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  16. Sakamoto K, Miyoshi H, Takegami K, et al. (1996) Probing substrate binding site of the Escherichia coli quinol oxidases using synthetic ubiquinol analogues. J Biol Chem 271: 29897–29902

    Article  PubMed  CAS  Google Scholar 

  17. Okamura MY, Feher G (1992) Proton transfer in reaction center from photosynthetic bacteria. Annu Rev Biochem 61: 861–896

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome system. J Theor Biol 62: 327–367

    Article  PubMed  CAS  Google Scholar 

  19. Brandt U (1996) Energy conservation by bifurcated electron-transfer in the cytochrome-bc, complex. Biochim Biophys Acta 1275: 41–46

    Article  PubMed  Google Scholar 

  20. Orii Y, Mogi T, Sato-Watanabe M, et al. (1995) Facilitated intramolecular electron transfer in the Escherichia coli bo-type ubiquinol oxidase requires chloride. Biochemistry 34: 1127–1132

    Article  PubMed  CAS  Google Scholar 

  21. Wang J, Rumbley J, Ching YC, et al. (1995) Reaction of cytochrome bo, with oxygen: extra redox center(s) are present in the protein. Biochemistry 34: 15504–15511

    Article  PubMed  CAS  Google Scholar 

  22. Sato-Watanabe M, Mogi T, Ogura T, et al. (1994) Identification of a novel quinone-binding site in the cytochrome bo complex from Escherichia coli. J Biol Chem 269: 28908–28912

    PubMed  CAS  Google Scholar 

  23. Svensson-Ek M, Thomas JW, Gennis RB, et al. (1996) Kinetics of electron and proton transfer during the reaction of wild type and helix VI mutants of cytochrome bo, with oxygen. Biochemistry 35: 13673–13680

    Article  PubMed  CAS  Google Scholar 

  24. Puustinen A, Verkhovsky MI, Morgan JE, et al. (1996) Reaction of the Escherichia coli quinol oxidase cytochrome bo with dioxygen: the role of a bound ubiquinone molecule. Proc Natl Acad Sci USA 93: 1545–1548

    Article  PubMed  CAS  Google Scholar 

  25. Zickermann I, Anemüller S, Richter OMH, et al. (1996) Biochemical and spectroscopic properties of the four-subunit quinol oxidase (cytochrome ba,) from Paracoccus denitrificans. Biochim Biophys Acta 1277: 93–102

    Article  PubMed  CAS  Google Scholar 

  26. Sato-Watanabe M, Itoh S, Mogi T, et al. (1995) Stabilization of a semiquinone radical at the high-affinity quinone-binding site (QH) of the Escherichia coli bo-type ubiquinol oxidase. FEBS Lett 374: 265–269

    Article  PubMed  CAS  Google Scholar 

  27. Ingledew WJ, Ohnishi T, Salerno JC (1995) Studies on a stabilization of ubisemiquinone by Escherichia coli quinol oxidase, cytochrome bo. Eur J Biochem 227: 903–908

    Article  PubMed  CAS  Google Scholar 

  28. Osborn JP, Musser SM, Scultz BE, et al. (1996) Rapid formation of a ubisemiquinone species upon oxidation of quinol by the cytochrome bo, from Escherichia coli. Keio J Med 45: S52

    Google Scholar 

  29. Sato-Watanabe M, Mogi T, Miyoshi H, et al. (1995) Characterization of the quinol oxidation site of the E. coli cytochrome bo complex. Biophys J 68: A318

    Google Scholar 

  30. Yang FD, Yu L, Yu CA, et al. (1986) Use of an azido-ubiquinone derivative to identify subunit I as the ubiquinol-binding site of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem 261: 14987–14990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this paper

Cite this paper

Sato-Watanabe, M., Mogi, T., Miyoshi, H., Anraku, Y. (1998). Cooperation of Two Quinone-Binding Sites in the Oxidation of Substrates by Cytochrome bo . In: Ishimura, Y., Shimada, H., Suematsu, M. (eds) Oxygen Homeostasis and Its Dynamics. Keio University Symposia for Life Science and Medicine, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68476-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68476-3_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68478-7

  • Online ISBN: 978-4-431-68476-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics