Skip to main content

Structure and functions of pituitary adenylate cyclase activating polypeptide (PACAP) as a neurotrophic factor

  • Chapter
  • 90 Accesses

Summary

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide that was first isolated from ovine hypothalamus extracts on the basis of its ability to increase cyclic AMP in cultured rat pituitary cells. PACAP belongs to the secretin/glucagon family, and shows highest homology (68%>) with vasoactive intestinal polypeptide (VIP). The PACAP gene spans 6.5 kb and consists of 5 exons and 4 introns. Further in the mouse brain PACAP mRNA, a variety of the 5′ untranslated region are present due to three independent promoters and alternative splicing of the transcripts, indicating that the expression of PACAP gene is regulated in dual mode, inducibly and constitutively. In the central nervous system, PACAP acts not only as a neurotransmitter or neuromodulator, but also as a neurotrophic factor that may play an important role during the development of the brain. In the adult brain, PACAP appears to function as a neuroprotective factor that attenuates the neuronal damages resulting from various insults like focal ischemia by middle cerebral artery occlusion (MCAO). Together with the fact that PACAP can easily cross the blood brain barrier, these suggest that PACAP may be a promising therapeutic agent in brain attack.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miyata A, Arimura A, Dahl RR, et al (1989) Isolation of a novel 38 residuehypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Res Commun 164:567–574

    CAS  Google Scholar 

  2. Miyata A, Jiang L, Dahl RR, et al (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclaseactivating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–648

    PubMed  CAS  Google Scholar 

  3. Kimura C, Ohkubo S, Ogi K, et al (1990) A novel peptide which stimulates adenylate cyclase: Molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun 166:81–89

    PubMed  CAS  Google Scholar 

  4. Okazaki K, Itoh Y, Ogi K, et al (1995) Characterization of murine PACAP mRNA. Peptides 16:1295–1299

    PubMed  CAS  Google Scholar 

  5. Ogi K, Kimura C, Onda H, et al (1990) Molecular cloning and characterization of cDNA for the precursor of rat pituitary adenylate cyclase-activating polypeptide (PACAP). Biochem Biophys Res Commun 173:1271–1279

    PubMed  CAS  Google Scholar 

  6. McRory JE, Parker RL, Sherwood NM (1997) Expression and alternative processing of a chicken gene encoding both growth hormone-releasing hormone and pituitary adenylate cyclase-activating polypeptide. DNA and Cell Biol 16:95–102

    CAS  Google Scholar 

  7. Chartrel N, Tonon MC, Vaudry H, et al (1991) Primary structure of frog pituitary adenylate cyclase-activating polypeptide (PACAP) and effects of ovine PACAP on frog pituitary. Endocrinology 129: 3367–3371

    PubMed  CAS  Google Scholar 

  8. Parker DB, Coe IR, Dixon GH, et al (1993) Two salmon neuropeptides encoded by one brain cDNA are structurally related to members of the glucagons superfamily. Eur J Biochem 215:439–448

    PubMed  CAS  Google Scholar 

  9. McRory JE, Parker DB, Ngamvongchon S, et al (1995) Sequence and expression of cDNA for pituitary adenylate cyclase-activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH) -like peptide in catfish. Mol Cell Endocrinol 108:169–177

    PubMed  CAS  Google Scholar 

  10. McRory JE, Sherwood NM (1997) Two protochordate genes encode pituitary adenylate cyclase-activating polypeptide and related family members. Endocrinology 138:2380–2390

    PubMed  CAS  Google Scholar 

  11. Arimura A (1998) Perspective on pituitary adenylate cyclase-activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 48:301–331

    PubMed  CAS  Google Scholar 

  12. Arimura A (1993) Receptors for pituitary adenylate cyclase-activating polypeptide: comparison with vasoactive intestinal peptide receptors. Trends Endocrinol Metab 3: 288–294

    Google Scholar 

  13. Arimura A, Somgyvari VA, Weill C, et al (1994) PACAP function as a neurotrophic factor. Ann NY Acad of Sci 739: 228–243

    CAS  Google Scholar 

  14. Seidah NG, Day R, Hamelin J, et al (1992) Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subilisin-like proprotein convertase. Mol Endocrinol 6: 1559–1570

    PubMed  CAS  Google Scholar 

  15. Loh Y, Peng S, Elkabes S, et al (1988) Regulation of pro-opiomelanocortin (POMC) biosynthesis in the amphibian and mouse pituitary intermediate lobe. In: The Melanotropic Peptides, Hadley ME (eds) CRC Press, Boca Raton, Fla., pp85–101

    Google Scholar 

  16. Hosoya M, Kimura C, Ogi K, et al (1992) Structure of the human pituitary adenylate cyclase-activating polypeptide (PACAP) gene. Biochem Biophys Acta 1129:199–206

    PubMed  CAS  Google Scholar 

  17. Yamamoto K, Hashimoto H, Hagihara N, et al (1998) Cloning and characterization of the mouse pituitary adenylate cyclase-activating polypeptide (PACAP) gene. Gene 211:63–69

    PubMed  CAS  Google Scholar 

  18. Vaudry D, Gonzalez BJ, Basille M, et al (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol. Rev 52: 269–324

    PubMed  CAS  Google Scholar 

  19. Itoh N, Obata K, Yanaihara N, et al (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549

    PubMed  CAS  Google Scholar 

  20. Ohkubo S, Ogi K, Kimura C, et al (1994) Expression of the PACAP gene in a human neuroblastoma cell line: cDNA cloning and analyses of the upstream regulatory region. Endocr J 2:135–145

    CAS  Google Scholar 

  21. Ohkubo S, Kimura C, Ogi K, et al (1992) Primary structure and characterization of the precursor to human pituitary adenylate cyclase-activating polypeptide. DNA Cell Biol 11:21–30

    PubMed  CAS  Google Scholar 

  22. Parker DB, Power ME, Swanson P, et al (1997) Exon skipping in the gene encoding pituitary adenylate cyclase-activating polypeptide in salmon alters the expression of two hormone that stimulate growth hormone release. Endocrinology 138:414–423

    PubMed  CAS  Google Scholar 

  23. Hoyle CH (1998) Neuropeptide families: Evolutionary perspectives. Regul Pept 73:1–33

    PubMed  CAS  Google Scholar 

  24. Chang E, Welch S, Luna J, et al (1993) Generation of human chromosome 18-specific YAC clone collection and mapping of 55 unique YACs by FISH and fingerprinting. Genomics 17:393–402

    PubMed  CAS  Google Scholar 

  25. Bodner M, Castrillo JL, Theill LE, et al (1988) The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 55:505–518

    PubMed  CAS  Google Scholar 

  26. Miyata A, Sugawara H, Sano H, et al (2001) Characterization of the mouse PACAP gene promoter. Reg Peptides 102:61

    Google Scholar 

  27. Gottschall PE, Tatsuno I, Miyata A, et al (1990) Characterization and distribution of binding sites for the hypothalamic peptide, Pituitary adenylate cyclase-activating polypeptide. Endcrinology 127: 272–277

    CAS  Google Scholar 

  28. Harmar AJ, Arimura A, Gozes I, et al (1998) Nomenclature of receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Pharmacol Rev 50: 265–270.

    PubMed  CAS  Google Scholar 

  29. Arimura A (1992) Pituitary adenylate cyclase-activating polypeptide (PACAP): Discovery and current status of research. Regul Pept 37:287–303

    PubMed  CAS  Google Scholar 

  30. Arimura A, Shioda S (1995) Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors: Neuroendocrine and endocrine interaction. Front Neuroendocrinol 16:53–88

    PubMed  CAS  Google Scholar 

  31. Koves K, Arimura A, Somogyvari-Vigh A, et al (1990) Immunohistochemical demonstration of a novel hypothalamic peptide, Pituitary adenylate cyclase-activating polypeptide in the ovine hypothalamus. Endocrinology 127: 264–271

    PubMed  CAS  Google Scholar 

  32. Koves K, Arimura A, Gorcs TG, et al (1990) Comparative distribution of immunoreactive pituitary adenylate cyclase-activating polypeptide ad vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 54: 159–169

    Google Scholar 

  33. Masuo Y, Ohtaki T, Masuda Y, et al (1992) Binding sites for Pituitary adenylate cyclase-activating polypeptide (PACAP): Comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections Brain Res. 575: 113–123

    PubMed  CAS  Google Scholar 

  34. Kimura S, Ohsige Y, Lin L, et al (1994) Localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamus-pituitary system in rats: Light and electron microscopic immunocytochemical studies. J Neuroendocrinol. 6: 503–507.

    PubMed  CAS  Google Scholar 

  35. Tamada T, Tanaka M, Ichitani Y, et al (1994) Pituitary adenylate cyclase-activating polypeptide (PACAP)-like immunoreactive neuronal elements in rat hypothalamus and median eminence with special reference to morphological background of its effect on anterior pituitary-light and electron microscopic immunocytochemistry Neurosci Lett 180: 105–108

    PubMed  CAS  Google Scholar 

  36. Hannibal J, Mikkelsen JD, Clausen H, et al (1995a) Gene expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept 55:133–148

    PubMed  CAS  Google Scholar 

  37. Shioda S, Yada T, Nakajo S, et al (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP): A novel regulator of vasopressin-containing neurons. Brain Res 765: 81–90

    PubMed  CAS  Google Scholar 

  38. Legradi G, Hannibal J, Lechan RM (1998) Pituitary adenylate cyclase-activating polypeptide-nerve terminals densely innervate corticotropin-releasing hormone-neurons in the hypothalamic paraventricular nucleus of the rat. Neurosci Lett 246: 145–148

    PubMed  CAS  Google Scholar 

  39. Murase T, Kondo K, Otake K, et al (1993) Pituitary adenylate cyclase-activating polypeptide stimulates arginine vasopressin release in conscious rats. Neuroendocrinology 57: 1092–1096

    PubMed  CAS  Google Scholar 

  40. Seki Y, Suzuki Y, Baskaya MK, et al (1995) Central cardiovascular effects induced by intracisternal PACAP in dogs. Am J Physiol 269: H135–H139

    PubMed  CAS  Google Scholar 

  41. Lutz-Bucher B, Monnier D, Koch B (1996) Evidence for the presence of receptors for pituitary adenylate cyclase-activating polypeptide in the neurohypophysis that are positively coupled to cyclic AMP formation and neurohypophyseal hormone secretion. Neuroendocrinology 64: 153–161

    PubMed  CAS  Google Scholar 

  42. Li S. Grinevich V, Fournier A, et al (1996) Effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone and somatostatin gene expression in the rat brain. Mol Brain Res 41:157–162

    PubMed  CAS  Google Scholar 

  43. Grinevich V, Fournier A, Pelletier G (1997) Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH) gene expression in the rat hypothalamic paraventricular nucleus. Brain Res 773: 190–196

    PubMed  CAS  Google Scholar 

  44. Bredow S, Kacsoh B, Obal F Jr, et al (1994) Increase of prolactin mRNA in rat hypothalamus after intracerebroventricular injection of VIP or PACAP. Brain Res 660:301–308

    PubMed  CAS  Google Scholar 

  45. Anderson ST, Sawangiaroen K, Curlewis JD (1996) Pituitary adenylate cyclase-activating polypeptide acts within the medial basal hypothalamus to inhibit prolactin and luteinizing hormone secretion. Endocrinology 137: 3424–3429

    PubMed  CAS  Google Scholar 

  46. Cagampang FR, Piggins HD, Sheward WJ, et al (1998) Circadian changes in PACAP type 1 (PACI) receptor mRNA in the rat suprachiasmatic and supraoptic nuclei. Brain Res 813: 218–222

    PubMed  CAS  Google Scholar 

  47. Shinohara K, Funabashi T, Kimura F (1999) Temporal profiles of vasoactive intestinal polypeptide precursor mRNA and its receptor mRNA in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res 63: 262–267

    PubMed  CAS  Google Scholar 

  48. Fukuhara C, Inouye SIT, Matsumoto Y, et al (1998) Pituitary adenylate cyclase-activating polypeptide rhythm in the rat pineal gland. Neurosci Lett 241: 115–119

    PubMed  CAS  Google Scholar 

  49. Masuo Y, Ohtaki T, Masuda Y, et al (1992) Binding sites for pituitary adenylate cyclase-activating polypeptide (PACAP): Comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res 575: 113–123

    PubMed  CAS  Google Scholar 

  50. Simonneaux V, Kienlen-Campard P, Loeffler JP, et al (1998) Pharmacological molecular and functional characterization of VIP/PACAP receptors in the rat pineal gland. Neuroscience 85: 887–896

    PubMed  CAS  Google Scholar 

  51. Yuwiler A, Brammer GL, Bennett BL (1995) Interaction between adrenergic and peptide stimulation in the rat pineal: Pituitary adenylate cyclase-activating polypeptide. J Neurochem 64: 2273–2280

    PubMed  CAS  Google Scholar 

  52. Ribelayga C, Pevet P, Simonneaux V (1997) Adrenergic and peptidergic regulations of hydroxyindole-O-methyltransferase activity in rat pineal gland. Brain Res 777: 247–250

    PubMed  CAS  Google Scholar 

  53. Von Gall C, Duffield GE, Hastings MH, et al (1998) CREB in the mouse SCN: A molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J Neurosci 18: 10389–10397

    Google Scholar 

  54. Kopp MD, Schomerus C, Dehghani F, et al (1999) Pituitary adenylate cyclaseactivating polypeptide and melatonin in the suprachiasmatic nucleus: Effects on the calcium signal transduction cascade. J Neurosci 19: 206–219

    PubMed  CAS  Google Scholar 

  55. Nowak JZ, Kuba K, Zawiska JB (1999) PACAP-induced formation of cyclic AMP in the chicken brain: Regional variations and the effect of melatonin. Brain Res 830:195–199

    PubMed  CAS  Google Scholar 

  56. Slanar O, Pelisek V, Vanecek J (2000) Melatonin inhibits pituitary adenylate cyclase-activating polypeptide increase of cyclic AMP accumulation and [Ca2+]I in cultured cells of neonatal rat pituitary. Neurochem Int 36: 213–219

    PubMed  CAS  Google Scholar 

  57. Kalra SP, Dube MG, Pu S, et al (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20: 68–100

    PubMed  CAS  Google Scholar 

  58. Luiten PG, ter Host GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation the control of feeding and metabolism. Prog Neurobiol 28: 1–54

    PubMed  CAS  Google Scholar 

  59. Leibowitz SF (1988) Hypothalamic paraventricular nucleus: Interaction between alpha 2-noradrenergic system and circulating hormone and nutrients in relation to energy balance. Neurosci Biobehav 12: 101–109

    CAS  Google Scholar 

  60. Christophe J (1998) Is there appetite after GLP-1 and PACAP? Ann N Y Acad Sci 865: 323–335

    PubMed  CAS  Google Scholar 

  61. Morley JE, Horowitz M, Morley PMK, et al (1992) Pituitary adenylate cyclase-activating polypeptide reduces food intake in mice. Peptidesl 3: 1133–1135

    Google Scholar 

  62. Chance WT, Thompson H, Thomas I, et al (1995) Anorectic and neurochemical effects of pituitary adenylate cyclase-activating polypeptide. Peptides 16: 1511–1516

    PubMed  CAS  Google Scholar 

  63. Mizuno Y, Kondo K, Terashima Y, et al (1998) Anorectic effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in rats: lack of evidence for involvement of hypothalamic neuropeptide gene expression. J Neuroendocrinol 10: 611–616

    PubMed  CAS  Google Scholar 

  64. Narita M, Dun SL, Dun NJ, et al (1996) Hyperalgesia induced by pituitary adenylate cyclase-activating polypeptide in the mouse spinal cord. Eur J Pharmacol 311:121–126

    PubMed  CAS  Google Scholar 

  65. Puig de Parada M, Parada M, Hernandez L (1995) Dispogenic effect of pituitary adenylate cyclase-activating polypeptide (PACAP38) injected into the lateral hypothalamus. Brain Res 696: 254–257

    Google Scholar 

  66. Nomura M, Ueta Y, Larsen PJ, et al (1997) Water deprivation increases the expression of pituitary adenylate cyclase-activating polypeptide gene in the rat subfornical organ. Endocrinology 138: 4096–4100

    PubMed  CAS  Google Scholar 

  67. Yamamoto T, Tatsuno I (1995) Antinociceptive effect of intrathecally administered pituitary adenylate cyclase-activating polypeptide (PACAP) on the rat formalin test. Neurosci Lett 184: 32–35

    PubMed  CAS  Google Scholar 

  68. Tatsuno I, Arimura A (1994) Pituitary adenylate cyclase-aetivating polypeptide (PACAP) mobilizes intracellular free calcium in cultures type-2, but not type-1, astrocytes. Brain Res 662: 1–10

    PubMed  CAS  Google Scholar 

  69. Just L, Olenik C, Meyer DK (1998) Glial expression of the proenkephalin gene in slice cultures of the subventricular zone. J Mol Neurosci 11: 57–66

    PubMed  CAS  Google Scholar 

  70. Moroo I, Tatsuno I, Uchida D, et al (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates mitogen-activated protein kinase (MAPK) in cultured rat astrocytes. Brain Res 765: 191–196

    Google Scholar 

  71. Zupan V, Hill JM, Brenneman DE, et al (1998) Involvement of pituitary adenylate cyclase-activating polypeptide II vasoactive intestinal peptide 2 receptor in mouse neocortical astrocytogenesis. J Neurochem 70: 2165–2173

    PubMed  CAS  Google Scholar 

  72. Deutsch PJ, Schadlow V, Barzilai N (1992) 38-amino acid form of pituitary adenylate cyclase-activating polypeptide induces process outgrowth in human neuroblastoma cells. J Neurosci Res 35: 312–320

    Google Scholar 

  73. Deutsch PJ, Sun Y (1992) The 38 amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. J Biol Chem 267: 5108–5113

    PubMed  CAS  Google Scholar 

  74. Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111: 457–502

    PubMed  CAS  Google Scholar 

  75. Wakade AR (1997) Sympathetic neurons of chic embryo are rescued by PACAP from apoptotic death. Reg. Peptides 71:141

    Google Scholar 

  76. Cavallaro S, Copani A, D’Agata V, et al (1996) Pituitary adenylate cyclase-activating polypeptide prevents apoptosis in cultures cerebellar granule neurons. Mol Pharmacol 50:60–66

    PubMed  CAS  Google Scholar 

  77. Chang JY, Korolev VV, Wang JZ (1996) Cyclic AMP and pituitary adenylate cyclase-activating polypeptide (PACAP) prevent programmed cell death of cultured rat cerebellar granule cells. Neurosci Let 206:181–184

    CAS  Google Scholar 

  78. Campard PK, Crochemore C, René F, et al (1997) PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol 16:323–333

    CAS  Google Scholar 

  79. Gonzalez BJ, Basille M, Vaudry D, et al (1997) Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 78:419–430

    PubMed  CAS  Google Scholar 

  80. Villalba M, Bockaert J, Journot L (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activating protein kinase (MAP kinase) pathway. J Neurosci. 17:83–90

    PubMed  CAS  Google Scholar 

  81. Vaudry D, Gonzalez BJ, Basille M, et al (1999) Neurotrophic activity of pituitary adenylate cyclase activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci USA 96: 9415–9420

    PubMed  CAS  Google Scholar 

  82. Gonzalez BJ, Vaudry D, Basille M, et al (1997) Role neurotrophique potential du pituitary adenylyl cyclase-activating polypeptide. Med/Sci 13:1331–1335

    Google Scholar 

  83. Gonzalez BJ, Leroux P, Basille M, et al (1994) Somatostatin and pituitary adenylate cyclase-activating polypeptide (PACAP).Two neuropeptides potentially involved in the development of the rat cerebellum. Ann Endocrinol 55:243–247

    CAS  Google Scholar 

  84. Basille M, Gonzalez BJ, Desrues L, et al (1995) Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates adenylyl cyclase and phospholipase C activity in rat cerebellar neuroblasts. J Neurochem 65:1318–1324

    PubMed  CAS  Google Scholar 

  85. Favit A, Scapagnini U, Canonico PL (1995) Pituitary adenylate cyclase-activating polypeptide activates different signal transducing mechanism in cultured cerebellar granule cells. Neuroendocrinology 61:377–382

    PubMed  CAS  Google Scholar 

  86. Basille M, Gonzalez BJ, Leroux P, et al (1993) Localization and characterization of PACAP receptors in the rat cerebellum during development: evidence for a stimulatory effect of PACAP on immune cerebellar granule cells. Neuroscience 57: 329–338

    PubMed  CAS  Google Scholar 

  87. Gonzalez BJ, Basille M, Mei YA, et al (1996) Ontogeny of PACAP and PACAP receptors in the rat brain: Role of PACAP in the cerebellum during development. Ann NYAcad Sci 805: 302–314

    CAS  Google Scholar 

  88. Mei YA (1999) High-voltage-activating calcium current and its modulation by dopamine D4 and pituitary adenylate cyclase-activating polypeptide receptors in cerebellar granule cells. Chung Kuo Yao Li Hsueh Pao 20: 3–9

    PubMed  CAS  Google Scholar 

  89. Zerr P, Feltz A (1994) Forskolin blocks the transient K current of rat cerebellar granule neurons. Neurosci Lett 181: 153–157

    PubMed  CAS  Google Scholar 

  90. Colom LV, Diaz ME, Beers DR, et al (1998) Role of potassium channels in amyloid-induced cell death. J Neurochem 70: 1925–1934

    PubMed  CAS  Google Scholar 

  91. Kobayashi T, Mori Y (1998) Ca2+ channel antagonists and neuroprotection from cerebral ischemia. Eur J Pharmacol 363: 1–15

    PubMed  CAS  Google Scholar 

  92. Krebs J (1998) The role of calcium in apoptosis. Biometals 11: 375–382

    PubMed  CAS  Google Scholar 

  93. Lu N, DiCicco-Bloom E (1997) Pituitary adenylate cyclase-activating polypeptide is an autocrine inhibitor of mitosis in cultured cortical precursor cells. Proc Natl Acad Sci USA 94:3357–3362

    PubMed  CAS  Google Scholar 

  94. Lu N, Zhou R, DiCicco-Bloom E (1998) Opposing mitogenic regulation by PACAP in sympathetic and cerebral cortical precursors correlates with differential expression of PACAP receptor (PAC1-R) isoforms. J Neurosci Res 53: 651–662

    PubMed  CAS  Google Scholar 

  95. DiCicco-Bloom E, Lu N, Pintar JE, et al (1998) The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann NY Acad Sci 865: 274–289

    PubMed  CAS  Google Scholar 

  96. Choi DW, Maulucci-Gedde M, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 357–368

    PubMed  CAS  Google Scholar 

  97. Koh JY, Palmer E, Cotman CW (1991) Activation of the metabotropic glutamate receptor attenuates N-methyl-D-aspartate neurotoxicity in cortical cultures. Proc Natl Acad Sci USA 88: 9431–9435

    PubMed  CAS  Google Scholar 

  98. Sagara Y, Schubert D (1998) The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J Neurosci 18: 6662–6671

    PubMed  CAS  Google Scholar 

  99. Martin JL, Gasser D, Magistretti PJ (1995) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potentiate c-fos expression induced by glutamate in cultured cortical neurons. J Neurochem 65: 1–9

    PubMed  CAS  Google Scholar 

  100. Stella N, Magistretti PJ (1996) Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) potential the glutamate-evoked release of arachidonic acid from mouse cortical neurons. Evidence for a cAMP-independent mechanism. J Biol Chem 271: 705–710

    Google Scholar 

  101. Magistretti PJ, Cardinaux JR, Martin JL (1998) VIP and PACAP in the CNS: Regulators of glial energy metabolism and modulators of glutamatergic signaling. Ann NY Acad Sci 865: 213–225

    PubMed  CAS  Google Scholar 

  102. Pellegri G, Magistretti PJ, Martin JL (1998) VIP and PACAP potentiate the action of glutamate on BDNF expression in mouse cortical neurons. Eur J Neurosci 10: 272–280

    PubMed  CAS  Google Scholar 

  103. Morio H, Tatsuno I, Hirai A, et al (1996) Pituitary adenylate-cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res 741: 82–88

    PubMed  CAS  Google Scholar 

  104. Shoge K, Mishima HK, Saitoh T, et al (1999) Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res 839: 66–73

    PubMed  CAS  Google Scholar 

  105. Liu GL, Madsen BW (1997) PACAP38 modulates activity of NMDA receptors in cultured chick cortical neurons. J Neurophysiol 78: 2231–2234

    PubMed  CAS  Google Scholar 

  106. Liu GJ, Madsen BW (1998) Modulatory action of PACAP27 on NMDA receptor channel activity in cultured chick cortical neurons. Brain Res 791: 290–294

    PubMed  CAS  Google Scholar 

  107. Kong LY, Maderdrut JL, Jeohn GH, et al (1999) Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience 91:493–500

    PubMed  CAS  Google Scholar 

  108. Takei N, Skoglösa Y, Lindholm D (1998) Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on mesencephalic dopaminergic neurons. J Neurosci Res 54: 698–706

    PubMed  CAS  Google Scholar 

  109. Brenneman DE, Westbrook GL, Fitzgeral SP, et al (1988) Neuronal cell killing by the envelop protein if HIV and its prevention by vasoactive intestinal peptide. Nature 335: 639–642

    PubMed  CAS  Google Scholar 

  110. Pulsinelli WA, Brierly JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272

    PubMed  CAS  Google Scholar 

  111. Uchida D, Arimura A, Somogyvari-Vigh A, et al (1996) Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase-activating polypeptide. Brain Res 736: 280–286

    PubMed  CAS  Google Scholar 

  112. Banks WA, Kastin AJ, Komaki G, et al (1993) Passage of pituitary adenylate cyclase-activating polypeptide 1–27 and pituitary adenylate cyclase-activating polypeptide 1–38 across the blood-brain barrier. J Pharmacol Exp Ther 267: 690–696

    PubMed  CAS  Google Scholar 

  113. Gillardon F, Hata R, Hossmann KA (1998) Delayed up-regulation of zacl and PACAP type I receptor after transient focal cerebral ischemia in mice. Brain Res Mol Brain Res 61: 207–210

    PubMed  CAS  Google Scholar 

  114. Ciani E, Hoffman A, Schmidt P, et al (1999) Induction of the PAC1-R (PACAP-type I receptor) gene by p53 Zac. Brain Res Mol Brain Res 69: 290–294

    PubMed  CAS  Google Scholar 

  115. Skoglösa Y, Lewen A, Takei N, et al (1999) Regulation of pituitary adenylate cyclase-activating polypeptide and its receptor type 1 after traumatic brain injury: Comparison with brain-derived neurotrophic factor and the induction of neuronal cell death. Neuroscience 90:235–247

    PubMed  Google Scholar 

  116. Lioudyno M, Skoglösa Y, Takei N, et al (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) protects dorsal root ganglion neurons from death and induced calcitonin gene-related peptide (CGRP) immunoreactivity in vivo. J Neurosci Res 51: 243–256

    PubMed  CAS  Google Scholar 

  117. Zhang Y, Danielsen N, Sundler F, et al (1998) Pituitary adenylate cyclase-activating peptide is unregulated in sensory neurons by inflammation. Neuro Report 9: 2833–2836

    CAS  Google Scholar 

  118. Zhang YZ, Hannibal J, Zhao Q, et al (1996) Pituitary adenylate cyclase-activating peptide expression in the rat dorsal root ganglia: Up-regulation after peripheral nerve injury. Neuroscience 74: 1099–1110

    PubMed  CAS  Google Scholar 

  119. Zhou X, Rodriguez WI, Casillas RA, et al (1999b) Axotomy-induced changes in pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP receptor gene expression in the adult rat facial motor nucleus. J Neurosci Res 57: 953–961

    PubMed  CAS  Google Scholar 

  120. Reglodi D, Somogyvari VA, Vigh S, et al (2000) Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 31: 1411–1417

    PubMed  CAS  Google Scholar 

  121. Longa EZ, Weinstein PR, Carlson S, et al (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91

    PubMed  CAS  Google Scholar 

  122. Brenneman DE, Neale EA, Foster GA, et al (1987) Nonneuronal cells mediate neurotrophic action of vasoactive intestinal polypeptide. J Cell Biol 104: 1603–1610

    PubMed  CAS  Google Scholar 

  123. Ashur-Fabian O, Giladi E, Brennemam DE, et al (1997) Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. J Mol Neurosci 9:11–22

    Google Scholar 

  124. Nagao H, Matsuoka I, Kurihara K (1995) Effects of adenylyl cyclase-linked neuropeptides on the expression of ciliary neurotrophic factor-mRNA in cultured astrocytes. FEBS Lett 362: 75–79

    PubMed  CAS  Google Scholar 

  125. Gottschall PE, Tatsuno I, Arimura A (1994) Regulation of interleukin-6 (IL-6) secretion in primary cultured rat astrocytes: Synergism of interleukin-1 (IL-1) and pituitary adenylate cyclase-activating polypeptide (PACAP). Brain Res 637:197–203

    PubMed  CAS  Google Scholar 

  126. Miyata A, Sato K, Hino J, et al (1998) Rat aortic smooth-muscle cell proliferation is bidirectionally regulated in a cell cycle-dependent manner via PACAP/VIP type 2 receptor. Ann N Y Acad Sci 865: 73–81

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Miyata, A., Kangawa, K. (2002). Structure and functions of pituitary adenylate cyclase activating polypeptide (PACAP) as a neurotrophic factor. In: Kikuchi, H. (eds) Strategic Medical Science Against Brain Attack. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68430-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68430-5_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68432-9

  • Online ISBN: 978-4-431-68430-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics