Skip to main content

Uptake, Metabolism, and Detoxification of Sulfur Dioxide

  • Chapter
Book cover Air Pollution and Plant Biotechnology

Abstract

Sulfur dioxide (SO2) is a major air pollutant that is artificially produced by fossil fuel combustion, mainly in the industrialized areas of both developed and developing countries, and also results from volcanic emission, biogenic emissions, etc. SO2 can also form aerosols, sulfate particles, in the atmosphere by photochemical reactions. Aerosols can then be incorporated into clouds and/or transported over long distances, thus causing severe acid precipitation as wet and dry depositions in surrounding countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alscher R, Bower JL, Zipfel W (1987) The basis for different sensitivities to SO2 in two cultivars of pea. J Exp Bot. 38: 99–108

    Article  CAS  Google Scholar 

  • Amundson RG, Weinstein LH (1981) Joint action of sulfur dioxide and nitrogen dioxide on foliar injury and stomatal behavior in soybean. J Environ Qual 10: 204–206

    Article  CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34: 129–135

    CAS  Google Scholar 

  • Asada K, Kiso K (1973) Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. Eur J Biochem 33: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Ashenden TW (1978) Growth reductions in cocksfoot (Dactylis glomerata L.) as a result of SO2 pollution. Environ Pollut 15: 161–166

    Article  CAS  Google Scholar 

  • Ashenden TW, Mansfield TA (1978) Extreme pollution sensitivity of grasses when SO2 and NO2 are present in the atmosphere together. Nature 273: 142–143

    Article  CAS  Google Scholar 

  • Ayazloo M, Garsed SG, Bell JNB (1982) Studies on the tolerance to sulphur dioxide of grass populations in polluted areas. II. Morphological and physiological investigations. New Phytol 90: 109–126

    Article  CAS  Google Scholar 

  • Bae GY, Kondo N, Nakajima N, Ishizuka K (1995) Ethylene production in tomato plants by SO2 in relation to leaf injury (in Japanese with English abstract). J Jpn Soc Atmos Environ 30: 367–373

    CAS  Google Scholar 

  • Bae GY, Nakajima N, Ishizuka K, Kondo N (1996) The role in ozone phytotoxicity of the evolution of ethylene upon induction of 1-aminocyclopropane-l-carboxylic acid synthase by ozone fumigation in tomato plants. Plant Cell Physiol 37: 129–134

    CAS  Google Scholar 

  • Bailey JL, Cole RD (1959) Studies on the reaction of sulfite with proteins. J Biol Chem 234: 1733–1739

    PubMed  CAS  Google Scholar 

  • Barton JR, McLaughlin SB, McConathy RK (1980) The effects of SO2 on components of leaf resistance to gas exchange. Environ Pollut Ser A 21: 255–265

    Article  CAS  Google Scholar 

  • Baxter R, Emes MJ, Lee J A (1989) The relationship between extracellular metal accumulation and bisulphate tolerance in Sphangnum cuspidatum Hoffm. New Phytol 111: 463–472

    Article  CAS  Google Scholar 

  • Baxter R, Emes MJ, Lee JA (1991) Short term effects of bisulphite on pollution-tolerant and pollution sensitive populations of Sphangnum cuspidatum Ehrh. (ex. Hoffm. ). New Phytol 118: 425–431

    Article  Google Scholar 

  • Black CR, Black VJ (1979) The effects of low concentrations of sulphur dioxide on stomatal conductance and epidermal cell survival in field bean ( Vicia faba L. ). J Exp Bot 30: 291–298

    Article  CAS  Google Scholar 

  • Black VJ, Unsworth MN (1979) Effects of low concentrations of sulphur dioxide on net photosynthesis and dark respiration. J Exp Bot 30: 473–483

    Article  CAS  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen T-L, Gage DA, Hanson AD (1999) S- Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11: 1485–1497

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Wilson LG, L, Filner P (1978) Mechanisms of resistance to sulfur dioxide in the Cucurbitaceae. Plant Physiol 61: 761–767

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, LeCureux L, Wilson LG, L, Filner P (1979) Emission of ethylene and ethane by leaf tissue exposed to injurious concentrations of sulfur dioxide or bisulfite ion. Plant Physiol 63: 924–930

    Article  PubMed  CAS  Google Scholar 

  • Clarke K, Murray F (1990) Stimulatory effects of SO2 on growth of Eucalyptus rudis Endl. New Phytol 115: 633–637

    Article  CAS  Google Scholar 

  • Cohen HJ, Drew RT, Johnson JL, Rajagopalan KV (1973) Molecular basis of the biological function of molybdenum. The relationship between sulfite oxidase and the acute toxicity of bisulfite and SO2. Proc Natl Acad Sci USA 70: 3655–3659

    Article  PubMed  CAS  Google Scholar 

  • Cornic G (1987) Interaction between sublethal pollution by sulphur dioxide and drought stress. The effect on photosynthetic capacity. Physiol Plant 71: 115–119

    CAS  Google Scholar 

  • Cowan IR, Raven JA, Hartung W, Farquhar GD (1982) A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves. Aust J Plant Physiol 9: 489–498

    Article  CAS  Google Scholar 

  • Cowling DW, Lockyer DR (1978) The effect of SO2 on Lolium perenne L. grown at different levels of sulphur and nitrogen nutrition. J Exp Bot 29: 257–265

    Article  CAS  Google Scholar 

  • Cram WJ (1983) Sulphate accumulation is regulated at the tonoplast. Plant Sci Lett 31: 329–338

    Article  CAS  Google Scholar 

  • Deepak SS, Agrawal M (1999) Growth and yield responses of wheat plants to elevated levels of CO2 and SO2, singly and in combination. Environ Pollut 104: 411–419

    Article  CAS  Google Scholar 

  • Dittrich APM, Pfanz H, Heber U (1992) Oxidation and reduction of sulfite by chloroplasts and formation of sulfite addition compounds. Plant Physiol 98: 738–744

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I, Handler P (1961) Detection of free radicals generated during enzymic oxidations by the initiation of sulfite oxidation. J Biol Chem 236: 1836–1840

    PubMed  CAS  Google Scholar 

  • Furukawa A, Isoda O, Iwaki H, Totsuka T (1979) Interspecific difference in responses of transpiration to SO2. Environ Control Biol 17: 153–159

    Article  CAS  Google Scholar 

  • Furukawa A, Isoda O, Iwaki H, Totsuka T (1980a) Interspecific difference in resistance to sulfur dioxide. In: Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. Res. Rep. Natl. Inst. Environ. Stud. Jpn No.11, pp 113–126

    Google Scholar 

  • Furukawa A, Natori T, Totsuka T (1980b) The effect of SO2 on net photosynthesis in sunflower leaf. In: Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. Res. Rep. Natl. Inst. Environ. Stud. Jpn No.11, pp 113–126

    Google Scholar 

  • Furukawa A, Katase M, Ushijima T, Totsuka T (1984) Inhibition of photosynthesis of poplar species and sunflower by O3. In: Studies on effects of air pollutant mixtures on plants, Part 1. Res. Rep. Natl. Inst. Environ. Stud. Jpn No. 65, pp 77–87

    Google Scholar 

  • Garsed SG, Read DJ (1977) Sulphur dioxide metabolism in soybean, Glycine max var. biloxi. I. The effects of light and dark on the uptake and translocation of 35SO2. New Fhytol 78: 111–119

    Article  CAS  Google Scholar 

  • Gezeilus K, Hallgren J-E (1980) Effect of SO32- on the activity of ribulose bisphosphate carboxylase from seedlings of Pinus sivestris. Physiol Plant 49: 354–358

    Article  CAS  Google Scholar 

  • Gould RP, Minchin PEH, Young PC (1988) The effects of sulphur dioxide on phloem transport in two cereals. J Exp Bot 39: 997–1007

    Article  CAS  Google Scholar 

  • Gries C, Romagni JG, Nash TH III, Kuhn U, Kesselmeier J (1997) The relation of H2S release to SO2 fumigation of lichens. New Phytol 136: 703–711

    Article  CAS  Google Scholar 

  • Grill D, Esterbauer H, Klosch U (1979) Effect of sulphur dioxide on glutathione in leaves of plants. Environ Pollut Ser A 19: 187–194

    CAS  Google Scholar 

  • Grill D, Esterbauer H, Scharner M, Felgitsh C (1980) Effect of sulphur dioxide on protein-SH in needles of Picea abies. Eur J For Pathol 10: 263–267

    Article  CAS  Google Scholar 

  • Hällgren J-E, Frederiksson S-A (1982) Emission of hydrogen sulfide from sulfur dioxide-fumigated pine trees. Plant Physiol 70: 456–459

    Article  PubMed  Google Scholar 

  • Hampp R, Ziegler I (1977) Sulfate and sulfite translocation via the phosphate translocator of the inner envelope membrane of chloroplasts. Planta 137: 309–312

    Article  CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202: 138–148

    Article  PubMed  CAS  Google Scholar 

  • Herschbach C, De Kok LJ, Rennenberg H (1995) Net uptake of sulphate and its transport to the shoot in tobacco plants fumigated with H2S or SO2. Plant Soil 175: 75–84

    Article  CAS  Google Scholar 

  • Hogetsu T, Shishikura M (1994) Effects of sulfur dioxide and ozone on intact leaves and isolated mesophyll cells of groundnut plants ( Arachis hypogaea L. ). J Plant Res 107: 229–235

    Article  CAS  Google Scholar 

  • Jensen KF, Roberts BR (1986) Changes in yellow poplar ( Liriodendron tulipifera) stomatal resistance with sulfur dioxide and ozone fumigation. Environ Pollut Ser A 41: 235–246

    Article  CAS  Google Scholar 

  • Kaiser G, Martinoia E, Schroppel-Meier G, Heber U (1989) Active transport of sulfite into the vacuole of plant cells provides halotorelance and can detoxify SO2. J Plant Physiol 133: 756–763

    CAS  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145: 377–382

    Article  CAS  Google Scholar 

  • Kaiser WM, Höfler M, Heber U (1993) Can plants exposed to SO2 excrete sulfuric acid through the roots? Physiol Plant 87: 61–67

    Article  CAS  Google Scholar 

  • Kimmerer TW, Kozlowski TT (1981) Stomatal conductance and sulfur uptake of five clones of Populus tremuloides exposed to sulfur dioxide. Plant Physiol 67: 990–995

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff SJ (1961) The sulfite-activated oxidation of reduced pyrimidine nucleotides by peroxidase. Biochim Biophys Acta 48: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Kondo N (1987) Changes in transpiration rate caused by air pollutants and contents of phytohormones. In: Studies on the role of vegetation as a sink of air pollutants. Res. Rep. Natl. Inst. Environ. Stud. No. 108, pp 187–197 (in Japanese)

    Google Scholar 

  • Kondo N, Sugahara K (1978) Changes in transpiration rate of SO2-resistant and -sensitive plants with SO2 fumigation and the participation of abscisic acid. Plant Cell Physiol 19: 365–373

    CAS  Google Scholar 

  • Kondo N, Sugahara K (1984) Effects of air pollutants on transpiration rate in relation to abscisic acid content. In: Studies on effects of air pollutant mixtures on plants, Part 1. Res. Rep. Natl. Inst. Environ. Stud. Jpn No. 65, pp 1–8

    Google Scholar 

  • Kondo N, Akiyama Y, Fujiwara M, Sugahara K (1980a) Sulfite oxidizing activities in plants. In: Studies on the effects of air pollutants on plants. Res. Rep. Natl. Inst. Environ. Stud. No.11, pp 137–150

    Google Scholar 

  • Kondo N, Maruta I, Sugahara K (1980b) Effects of sulfite and pH on abscisic acid-dependent transpiration and on stomatal opening. Plant Cell Physiol 21: 817–828

    CAS  Google Scholar 

  • Koziol MJ, Jordan CF (1978) Changes in carbohydrate levels in red kidney bean ( Phaseolus vulgaris L.) exposed to sulphur dioxide. J Exp Bot 29: 1057–1043

    Google Scholar 

  • Kropff MJ (1987) Physiological effects of sulfur dioxide: 1. The effect of sulfur dioxide on photosynthesis and stomatal regulation of Vicia faba L. Plant Cell Environ 10: 753–760

    CAS  Google Scholar 

  • Laisk A, Pfanz H, Heber U (1988) Sulfur dioxide fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere: II. Consequences of sulfur dioxide uptake as revealed by computer analysis. Planta 173: 241–252

    Article  CAS  Google Scholar 

  • Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120: 637–643

    Article  PubMed  CAS  Google Scholar 

  • Libera W, Ziegler I, Ziegler H (1975) The action of sulfite on the HCO3 fixation and the fixation pattern of isolated chloroplasts and leaf tissue slices. Z Pflanzenphysiol 74: 420–433

    Google Scholar 

  • Lorenc-Plucinska G, Ziegler H (1987) The effect of sulphite on sucrose uptake and translocation in the cotyledons of castor bean ( Ricinus communis L. ). J Plant Physiol 127: 97–110

    CAS  Google Scholar 

  • Lucas PW (1990) The effects of prior exposure to sulfur dioxide and nitrogen dioxide on the water relations of timothy grass (Phleum pratense) under drought conditions. Environ Pollut 66: 117–138

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U, Osmond CB, Ball E, Brinckmann E, Kinze G (1972) Bisulfite compounds as metabolic inhibitors: nonspecific effects on membranes. Plant Cell Physiol 13: 505–514

    Google Scholar 

  • Maas FM, De Kok LJ (1988) In vitro NADH oxidation as an early indicator for growth reduction in spinach exposed to H2S in the ambient air. Plant Cell Physiol 29: 523–526

    CAS  Google Scholar 

  • Maas FM, De Kok LJ, Strik-Timmer W, Kuiper PJC (1987) Plant responses to H2S and SO2 fumigation. II. Differences in metabolism of H2S and SO2 in spinach. Physiol Plant 70: 722–728

    Article  CAS  Google Scholar 

  • Maas FM, van Loo EN, van Hasselt PR (1988) Effect of long-term H2S fumigation on photosynthesis in spinach. Correlation between CO2 fixation and chlorophyll a fluorescence. Physiol Plant 72: 77–83

    Article  CAS  Google Scholar 

  • Majernik O, Mansfield TA (1970) Direct effect of SO2 pollution on the degree of opening of stomata. Nature 227: 377–378

    Article  PubMed  CAS  Google Scholar 

  • Malhotra SS, Hocking D (1976) Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytol 76: 227–237

    Article  CAS  Google Scholar 

  • Mansfield TA, Majernik O (1970) Can stomata play a part in protecting plants against air pollutants? Environ Pollut 1: 149–154

    Article  Google Scholar 

  • Martin C, Thimann K (1972a) The role of protein synthesis in the senescence of leaves. 1. The formation of protease. Plant Physiol 49: 64–71

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Thimann K (1972b) The role of protein synthesis in the senescence of leaves. II. The influence of amino acids on senescence. Plant Physiol 50: 432–437

    Article  PubMed  CAS  Google Scholar 

  • Maurousset L, Bonnemain J-L (1990) Mechanism of the inhibition of phloem loading by sodium sulfite: effect of the pollutant on the transmembrane potential difference. Physiol Plant 80: 233–237

    Article  CAS  Google Scholar 

  • Maurousset L, Raymond P, Gaudillere M, Bonnemain J-L (1992) Mechanism of the inhibition of phloem loading by sodium sulfite: effect of the pollutant on respiration, photosynthesis and energy charge in the leaf tissues. Physiol Plant 84: 101–105

    Article  CAS  Google Scholar 

  • Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13: 971–976

    Article  CAS  Google Scholar 

  • Mehlhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327: 417–418

    Article  CAS  Google Scholar 

  • Mejstrik V (1980) The influence of low SO2 concentrations on growth reduction of Nicotiana tabacum L. cv. Samsun and Cucumis sativus L. cv. Unikat. Environ Pollut Ser A 21: 73–76

    Article  CAS  Google Scholar 

  • Menser HA, Heggestad HE (1966) Ozone and sulfur dioxide synergism: injury to tobacco plants. Science 153: 424–435

    Article  PubMed  CAS  Google Scholar 

  • Miller JE, Xerikos PB (1979) Residence time of sulfite in SO2 ‘sensitive’ and ‘tolerant’ soybean cultivars. Environ Pollut 18: 259–264

    Article  CAS  Google Scholar 

  • Minchin PEH, Gould R (1986) Effect of SO2 on phloem loading. Plant Sci 43: 179–183

    Article  CAS  Google Scholar 

  • Miszalski Z, Ziegler I (1979) Increase in chloroplastic thiol groups by SO2 and its effects on light modulation of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. Planta 145: 383–387

    Article  CAS  Google Scholar 

  • Mukerji SK, Yang SF (1974) Phosphoenolpyruvate carboxylase from spinach leaf tissue. Plant Physiol 53: 829–834

    Article  PubMed  CAS  Google Scholar 

  • Murray F (1985) Changes in growth and quality characteristics of Lucerne (Medicago sativa L.) in response to sulphur dioxide exposure under field conditions. J Exp Bot 36: 449–457

    Article  CAS  Google Scholar 

  • Murray F, Wilson S (1990) Growth responses of barley exposed to SO2. New Phytol 114: 537–541

    Article  CAS  Google Scholar 

  • Nakamura S (1970) Initiation of sulfite oxidation by spinach ferredoxin-NADP reductase and ferredoxin system: a model experiment on the superoxide anion radical production by metalloflavoproteins. Biochem Biophys Res Commun 41: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Navari-Izzo F, Izzo R, Quartacci MF, Lorenzini G (1989) Growth and solute leakage in Hordeum vulgaris exposed to long-term fumigation with low concentrations of SO2. Physiol Plant 76: 445–450

    CAS  Google Scholar 

  • Neighbour EA, Cottam DA, Mansfield TA (1988) Effects of sulphur dioxide and nitrogen dioxide on the control of water loss by birch ( Betula spp. ). New Phytol 108: 149–157

    Article  CAS  Google Scholar 

  • Okupodu CM, Alscher RG, Grabau EA, Cramer CL (1996) Physiological, biochemical and molecular effects of sulfur dioxide. J Plant Physiol 148: 309–316

    Article  Google Scholar 

  • Omasa K, Abo F, Natori T, Totsuka T (1980) Analysis of air pollutant sorption by plants. (3) Sorption under fumigation with NO2, O3 or NO2 + O3. In: Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. Res. Rep. Natl. Inst. Environ. Stud. Jpn No. 11, pp 213–224

    Google Scholar 

  • Omasa K, Hashimoto Y, Aiga I (1981) A quantitative analysis of the relationships between SO2 or NO2 sorption and their acute effects on plant leaves using image instrumentation. Environ Control Biol 19: 59–67

    Article  CAS  Google Scholar 

  • Omasa K, Hashimoto Y, Aiga I (1983) Observation of stomatal movements of intact plants using an image instrumentation system with a light microscope. Plant Cell Physiol 24: 281–288

    Google Scholar 

  • Omasa K, Hashimoto Y, Kramer PJ, Strain BR, Aiga I, Kondo J (1985) Direct observation of reversible and irreversible stomatal responses of attached sunflower leaves to SO2. Plant Physiol 79: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Padan E, Malkin S (1979) Sulfide inhibition of photosystem II in Cyanobacteria (blue-green algae) and tobacco chloroplasts. Biochim Biophys Acta 546: 270–279

    Article  PubMed  CAS  Google Scholar 

  • Osmond CB, Avadhani PN (1970) Inhibition of the ß -carboxylation pathway of CO2 fixation by bisulfite compounds. Plant Physiol 45: 228–230

    Article  PubMed  CAS  Google Scholar 

  • Peiser GD, Yang SF (1979) Ethylene and ethane production from sulfur dioxide-injured plants. Plant Physiol 63: 142–145

    Article  PubMed  CAS  Google Scholar 

  • Peiser GD, Lizada MCC, Yang SF (1982) Sulfite-induced lipid peroxidation in chloroplasts as determined by ethane production. Plant Physiol 70: 994–998

    Article  PubMed  CAS  Google Scholar 

  • Pfanz H, Martinoia E, Lange O-T, Heber U (1987a) Mesophyll resistance to SO2 fluxes into leaves. Plant Physiol. 85: 922–927

    Article  PubMed  CAS  Google Scholar 

  • Pfanz H, Martinoia E, Lange O-T, Heber U (1987b) Flux of SO2 into leaf cells and cellular acidification by SO2. Plant Physiol 85:928–933

    Google Scholar 

  • Pierre M, Queiroz O (1981) Enzymic and metabolic changes in bean leaves during continuous pollution by subnecrotic leaves of SO2. Environ. Pollut Ser A 21: 41–51

    Article  Google Scholar 

  • Pierre M, Queiroz O (1982) Modulation by leaf age and SO2 concentration of the enzymic response to subnecrotic SO2 pollution. Environ Pollut Ser A 28: 209–217

    Article  CAS  Google Scholar 

  • Pierre M, Queiroz O (1988) Air pollution by SO2 amplifies the effects of water stress on enzymes and total proteins of spruce needles. Physiol Plant 73: 412–417

    Article  CAS  Google Scholar 

  • Price S, Long SP (1989) An in vivo analysis of the effect of SO2 fumigation on photosynthesis in Zea mays. Physiol. Plant 76: 193–200

    Article  CAS  Google Scholar 

  • Priebe A, Klein H, Jäger H-J (1978) Role of polyamines in SO2-polluted pea plants. J Exp Bot 29: 1045–1050

    Article  CAS  Google Scholar 

  • Robinson MF, Heath J, Mansfield TA (1998) Disturbances in stomatal behaviour caused by air pollutants. J Exp Bot 49: 461–469

    Article  Google Scholar 

  • Rothermel B, Alscher R (1985) A light-enhanced metabolism of sulfite in cells of Cucumis sativus L. cotyledons. Planta 166: 105–110

    Article  CAS  Google Scholar 

  • Sakaki T, Kondo N (1984) Sulfite inhibition of uptake and fixation of inorganic carbon in mesophyll protoplasts isolated from Vicia faba L. In: Studies on effects of air pollutant mixtures on plants, Part 1. Res. Rep. Natl. Inst. Environ. Stud. Jpn No. 65, pp 35–43

    Google Scholar 

  • Sakaki T, Kondo N (1985) Inhibition of photosynthesis by sulfite in mesophyll protoplasts isolated from Vicia faba L. in relation to intracellular sulfite accumulation. Plant Cell Physiol 26: 1045–1055

    CAS  Google Scholar 

  • Schiff JA, Hodson RC (1973) The metabolism of sulfate. Annu Rev Plant Physiol 24: 381–414

    Article  CAS  Google Scholar 

  • Sekiya J, Schmidt A, Wilson LG, Filner P (1982a) Emission of hydrogen sulfide by leaf tissue in response to L-cysteine. Plant Physiol 70: 430–436

    Article  PubMed  CAS  Google Scholar 

  • Sekiya J, Wilson LG, Filner P (1982b) Resistance to injury by sulfur dioxide. Correlation with its reduction to, and emission of, hydrogen sulfide in Cucurbitaceae. Plant Physiol 70: 437–441

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki K, Sugahara K (1979a) Specific inhibition of photosystem II activity in chloroplasts by fumiation of spinach leaves with SO2. Plant Cell Physiol 20: 947–955

    CAS  Google Scholar 

  • Shimazaki K, Sugahara K (1979b) Inhibition site of the electron transport system in lettuce chloroplasts by fumigation of leaves with SO2. Plant Cell Physiol 21: 125–135

    Google Scholar 

  • Shimazaki K, Sakaki T, Kondo N, Sugahara K (1980) Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2-fumigated leaves of spinach. Plant Cell Physiol 21: 1193–1204

    CAS  Google Scholar 

  • Shimazaki K, Nakamachi K, Kondo N, Sugahara K (1984a) Sulfite inhibition of photosystem II in illuminated spinach leaves. Plant Cell Physiol 25: 337–341

    CAS  Google Scholar 

  • Shimazaki K, Ito K, Kondo N, Sugahara K (1984b) Reversible inhibition of the photosynthetic water-splitting enzyme system by SO2-fumigation assayed chlorophyll fluorescence and EPR signal in vivo. Plant Cell Physiol 25: 795–803

    CAS  Google Scholar 

  • Silvius JE, Ingle M, Baer CH (1975) Sulfur dioxide inhibition of photosynthesis in isolated spinach chloroplasts. Plant Physiol. 56: 434–437

    Article  PubMed  CAS  Google Scholar 

  • Slovik S, Siegmund A, Kindermann G, Riebeling R, Balazs A (1995) Stomatal SO2 uptake and sulfate accumulation in needles of Norway spruce stands (Picea abies) in Central Europe. Plant Soil 168-169: 405–419

    Article  Google Scholar 

  • Slovik S, Hiive K, Kinderman G, Kaiser WM (1996) SO2-dependent cation competition and compartmentalization in Norway spruce needles. Plant Cell Environ 19: 813–824

    Article  CAS  Google Scholar 

  • Soldatini GF, Ranieri A, Lencioni L, Lorenzini G (1992) Effects of continuous SO2 fumigation on SH-containing compounds in two wheat cultivars of different sensitivities. J Exp Bot 43: 797–801

    Article  CAS  Google Scholar 

  • Sugahara K, Uchida S, Takimoto M (1980) Effects of sulfite ions on water-soluble chlorophyll proteins. In: Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. Res. Rep. Natl. Inst. Environ. Stud. Jpn No. 11, pp 103–112

    Google Scholar 

  • Takahama U, Veljovic-Iovanovic S, Heber U (1992) Effects of the air pollutant SO2 on leaves. Inhibition of sulfite oxidation in the apoplast by ascorbate and of apoplastic peroxidase by sulfite. Plant Physiol 100: 261–266

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Yoshida Y, Tamura G (1996) Purification and characterization of ferredoxin-sulfite reductases from leek ( Allium tuberosum) leaves. J Plant Res 109: 45–52

    Article  CAS  Google Scholar 

  • Tanaka H, Takanashi T, Yatazawa M (1972) Experimental studies on sulphur dioxide injuries in higher plants. I. Formation of glyoxylate bisulphite in plant leaves exposed to sulphur dioxide. Water Air Soil Pollut 1: 205–211

    CAS  Google Scholar 

  • Tanaka K, Sugahara K (1980) Role of superoxide dismutase in defense against SO2 toxicity and an increase in superoxide dismutase activity with SO2 fumigation. Plant Cell Physiol 21: 601–611

    CAS  Google Scholar 

  • Tanaka K, Kondo N, Sugahara K (1982a) Accumulation of hydrogen peroxide in chloroplasts of SO2-fumigated spinach leaves. Plant Cell Physiol 23: 999–1007

    CAS  Google Scholar 

  • Tanaka K, Otsubo T, Kondo N (1982b) Participation of hydrogen peroxide in the inactivation of Calvin cycle SH enzymes in SO2-fumigated spinach leaves. Plant Cell Physiol 23: 1009–1018

    CAS  Google Scholar 

  • Tanaka K, Suda Y, Kondo N, Sugahara K (1985) O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26: 1425–1431

    CAS  Google Scholar 

  • Thomas FM, Runge M (1992) Proton neutralization in the leaves of English oak ( Quercus robur L.) exposed to sulphur dioxide. J Exp Bot 43: 803–809

    Article  CAS  Google Scholar 

  • Thomas MD, Hendricks RH, Collier TR, Hill GR (1943) The utilization of sulfate and sulfur dioxide for the nutrition of alfalfa. Plant Physiol 18: 345–371

    Article  PubMed  CAS  Google Scholar 

  • Thomas MD, Hill GR Jr (1935) Absorption of sulphur dioxide by alfalfa and its relation to leaf injury. Plant Physiol 10: 291–307

    Article  PubMed  CAS  Google Scholar 

  • Tschanz A, Landolt W, Bleuler P, Brunold C (1986) Effect of SO2 on the activity of adenosine 5’-phosphosulfate sulfotransferase from spruce trees ( Picea abies) in fumigation chambers and under field conditions. Physiol Plant 67: 235–241

    Article  CAS  Google Scholar 

  • Veeranjaneyulu K, Soukpo£-Kossi CN, Leblanc RM (1994) Emission of sulfur dioxide from sulfite-treated birch leaves. J Plant Physiol 144: 420–423

    CAS  Google Scholar 

  • Veljovic-Jovanovic S, Bilger W, Heber U (1993) Inhibition of photosynthesis, acidification and stimulation of zeaxanthin formation in leaves by sulfur dioxide and reversal of these effects. Planta 191: 365–376

    Article  CAS  Google Scholar 

  • Weigl J, Ziegler H (1962) Die Raumliche Verteilung von 35S und die Art der Markierten Verbindungen in Spinatblattern nach Begasung mit 35SO2. Planta 58: 435–447

    Article  CAS  Google Scholar 

  • Wilson LG, Bressan RA, Filner P (1978) Light-dependent emission of hydrogen sulfide from plants. Plant Physiol 61: 184–189

    Article  PubMed  CAS  Google Scholar 

  • Wyss H-R, Brunold C (1980) Regulation of adenosine 5’-phosphosulfate sulfotransferase by sulfur dioxide in primary leaves of beans ( Phaseolus vulgaris ). Physiol Plant 50: 161–165

    Article  CAS  Google Scholar 

  • Yang SF (1967) Biosynthesis of ethylene. Ethylene formation from methional by horseradish peroxidase. Arch Biochem Biophys 122: 481–487

    Article  PubMed  CAS  Google Scholar 

  • Zelitch I (1957) a-Hydroxysulfonates as inhibitors of the enzymatic oxidation of glycolic and lactic acids. J Biol Chem 224:251–260

    Google Scholar 

  • Ziegler I (1972) The effect of SO3 on the activity of ribulose-l,5-diphosphate carboxylase in isolated spinach chloroplasts. Planta 103: 155–163

    Article  CAS  Google Scholar 

  • Ziegler I (1973) Effect of sulphite on phosphoenolpyruvate carboxylase and malate formation in extracts of Zea mays. Phytochemistry 12: 1027–1030

    Article  CAS  Google Scholar 

  • Ziegler I (1974) Malate dehydrogenase in Zea mays: properties and inhibition by sulfite. Biochim Biophys Acta 364: 28–37

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer -Verlag Tokyo

About this chapter

Cite this chapter

Kondo, N. (2002). Uptake, Metabolism, and Detoxification of Sulfur Dioxide. In: Omasa, K., Saji, H., Youssefian, S., Kondo, N. (eds) Air Pollution and Plant Biotechnology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68388-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68388-9_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68390-2

  • Online ISBN: 978-4-431-68388-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics