Skip to main content

Effects of Air Pollutants on Lipid Metabolism in Plants

  • Chapter
Air Pollution and Plant Biotechnology

Abstract

Ozone (O3), nitrogen oxides (NOx), peroxyacetyl nitrate (PAN), and sulfur dioxide (SO2) are major global air pollutants, causing serious vegetative damage and forest decline. To clarify both the acute and chronic phytotoxic mechanisms of these pollutants, their physiological and biochemical effects on plants have been extensively studied during the past several decades. According to ultrastructural observations of plant cells injured by these pollutants, cellular membrane systems are affected by the pollutants (Thomson 1975; Huttunen and Soikkeli 1984), and membrane permeability is also seen to change after treatment with SO2 (Malhotra and Hocking 1976) and O3 (Heath and Castillo 1988). It is now generally accepted that cellular membranes are among the primary sites of pollutant attack and, since lipids are important membrane components and play essential roles in maintaining membrane structure and function, many workers have examined the effects of pollutants on lipids to clarify the mechanisms of their phytotoxicity (Mudd et al. 1984; Heath 1984; Sakaki 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N, (1991) Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol 32: 691–697

    CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34: 129–135

    CAS  Google Scholar 

  • Asada K, Kiso K (1973): Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. Eur J. Biochem 33: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Blee E, Joyard J (1996) Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110: 445–454

    PubMed  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43: 83–116

    Article  CAS  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506

    Article  CAS  Google Scholar 

  • Budziszewski GJ, Croft KPC, Hildebrand DF (1996) Uses of biotechnology in modifying plant lipids. Lipids 31: 557–569

    Article  PubMed  CAS  Google Scholar 

  • Carlsson AS, Hellgren LI, Sellden G, Sandelius AS (1994) Effects of moderately enhanced levels of ozone on the acyl lipid composition of leaves of garden pea (Pisum sativum). Physiol Plant 91: 754–762

    Article  CAS  Google Scholar 

  • Carlsson AS, Wallin G, Sandelius AS (1996) Species-and age-dependent sensitivity to ozone in young plants of pea, wheat and spinach: effects on acyl lipid and pigment content and metabolism. Physiol Plant 98: 271–280

    Article  CAS  Google Scholar 

  • Conklin PL, Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109: 203–212

    Article  PubMed  CAS  Google Scholar 

  • Elstner EF (1982) Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol 33: 73–96

    Article  CAS  Google Scholar 

  • Fangmeier A, Kress LW, Lepper P, Heck WW (1990) Ozone effects on the fatty acid composition of loblolly pine needles (Pinus taeda L.). New Phytol 115: 639–647

    Article  CAS  Google Scholar 

  • Fong F, Heath RL (1981) Lipid content in the primary leaf of bean (Phaseolus vulgaris) after ozone fumigation. Z Pflanzenphysiol 104: 109–115

    CAS  Google Scholar 

  • Frederick PE, Heath RL (1975) Ozone-induced fatty acid and viability changes in Chlorella. Plant Physiol 55: 15–19

    Article  PubMed  CAS  Google Scholar 

  • Garstka M, Kaniuga Z (1991) Reversal by light of deleterious effects of chilling on oxygen evolution, manganese and free fatty acid content in tomato thylakoids is not accompanied by restoration of the original membrane conformation. Physiol Plant 82: 292–298

    Article  CAS  Google Scholar 

  • Hamada T, Nishiuchi T, Kodama H, Nishimura M, Iba K (1996) cDNA cloning of a wounding-inducible gene encoding a plastid ω-3 fatty acid desaturase from tobacco. Plant Cell Physiol 37: 606–611

    Google Scholar 

  • Harwood JL (1980) Plant acyl lipids: structure, distribution, and analysis. In: Stumpf PK (ed) The biochemistry of plants, vol 4. Lipids: structure and function. Academic Press, New York, pp 1–55

    Google Scholar 

  • Heath RL (1980) Initial events in injury to plants by air pollutants. Annu Rev Plant Physiol 31: 395–431

    Article  CAS  Google Scholar 

  • Heath RL (1984) Air pollutant effects on biochemicals derived from metabolism: organic, fatty and amino acids. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 275–290

    Google Scholar 

  • Heath RL, Castillo FJ (1988) Membrane disturbances in response to air pollutants. In: Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elsevier, London, pp 55–75

    Google Scholar 

  • Hellgren LI, Carlsson AS, Sellden G, Sandelius AS (1995) In situ leaf lipid metabolism in garden pea (Pisum sativum L.) exposed to moderately enhanced levels of ozone. J Exp Bot 46:221–230

    Google Scholar 

  • Hippeli S, Elstner EF (1996) Mechanisms of oxygen activation during plant stress: biochemical effects of air pollutants. J Plant Physiol 148: 249–257

    Article  CAS  Google Scholar 

  • Huttunen S, Soikkeli S (1984) Effects of various gaseous pollutants on plant cell ultrastructure. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 117–127

    Google Scholar 

  • Joyard J, Block MA, Douce R (1991) Molecular aspects of plastid envelope biochemistry. Eur J Biochem 199: 489–509

    Article  PubMed  CAS  Google Scholar 

  • Khan AA, Malhotra SS (1977) Effects of aqueous sulphur dioxide on pine needle glycolipids. Phytochemistry 16: 539–543

    Article  CAS  Google Scholar 

  • Kuiper PJC (1985) Environmental changes and lipid metabolism of higher plants. Physiol Plant 64: 118–122

    Article  CAS  Google Scholar 

  • Maccarrone M, Veldink GA, Vliegenthart JFG (1992) Thermal injury and ozone stress affect soybean lipoxygenases expression. FEBS Lett 309: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Mackay CE, Senaratna T, McKersie BD, Fletcher RA (1987) Ozone induced injury to cellular membranes in Triticum aestivum L. and protection by the triazole S-3307. Plant Cell Physiol 28: 1271–1278

    CAS  Google Scholar 

  • Malhotra SS, Hocking D (1976) Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytol 76: 227–237

    Article  CAS  Google Scholar 

  • Malhotra SS, Khan AA (1978) Effects of sulphur dioxide fumigation on lipid biosynthesis in pine needles. Phytochemistry 17: 241–244

    Article  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 127–158

    Article  PubMed  CAS  Google Scholar 

  • McCarty RE, Jagendorf AT (1965) Chloroplast damage due to enzymatic hydrolysis of endogenous lipids. Plant Physiol 40: 725–735

    Article  PubMed  CAS  Google Scholar 

  • Mudd JB, McManus TT, Ongun A, McCullogh TE (1971a) Inhibition of glycolipid biosynthesis in chloroplasts by ozone and sulfhydryl reagents. Plant Physiol 48: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Mudd JB, McManus TT, Ongun A (1971b) Inhibition of lipid metabolism in chloroplasts by ozone. In: Englund HM, Beery WT (eds) Proceedings of the 2nd international clean air congress. Academic Press, New York, pp 256–260

    Google Scholar 

  • Mudd JB, Banerjee SK, Dooley MM, Knight KL (1984) Pollutants and plant cells: effects on membranes. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 105–116

    Google Scholar 

  • Navari-Izzo F, Quartacci MF, Izzo R (1991) Free fatty acids, neutral and polar lipids in Hordeum vulgare exposed to long-term fumigation with SO2. Physiol Plant 81: 467–472

    Article  CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Izzo R, Pinzino C (1992) Degradation of membrane lipid components and antioxidant levels in Hordeum vulgare exposed to long-term fumigation with SO2. Physiol Plant 84: 73–79

    Article  CAS  Google Scholar 

  • Nouchi I, Toyama S (1988) Effects of ozone and peroxyacetyl nitrate on polar lipids and fatty acids in leaves of morning glory and kidney bean. Plant Physiol 87: 638–646

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Katoh S, Murakami S (1977) Effects of linolenic acid on spinach chloroplast structure. Plant Cell Physiol 18: 551–560

    CAS  Google Scholar 

  • Pauls KP, Thompson JE (1981) Effects of in vitro treatment with ozone on the physical and chemical properties of membranes. Physiol Plant 53: 255–262

    Article  CAS  Google Scholar 

  • Peiser GD, Yang SF (1979) Ethylene and ethane production from sulfur dioxide-injured plants. Plant Physiol 63: 142–145

    Article  PubMed  CAS  Google Scholar 

  • Percy KE, Jensen KF, McQuattie CJ (1992) Effects of ozone and acidic fog on red spruce needle epicuticular wax production, chemical composition, cuticular membrane ultrastructure and needle wettability. New Phytol 122: 71–80

    Article  CAS  Google Scholar 

  • Peters RE, Mudd JB (1982) Inhibition by ozone of the acylation of glycerol 3-phosphate in mitochondria and microsomes from rat lung. Arch Biochem Biophys 216: 34–41

    Article  PubMed  CAS  Google Scholar 

  • Price A, Lucas PW, Lea PJ (1990) Age-dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. J Exp Bot 41: 1309–1317

    Article  CAS  Google Scholar 

  • Sakaki T (1998) Photochemical oxidants: toxicity. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 117–129

    Google Scholar 

  • Sakaki T, Kondo N, Sugahara K (1983) Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiol Plant 59: 28–34

    Article  CAS  Google Scholar 

  • Sakaki T, Ohnishi J, Kondo N, Yamada M (1985) Polar and neutral lipid changes in spinach leaves with ozone fumigation: triacylglycerol synthesis from polar lipids. Plant Cell Physiol 26: 253–262

    CAS  Google Scholar 

  • Sakaki T, Saito K, Kawaguchi A, Kondo N, Yamada M (1990a) Conversion of monogalactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94: 766–772

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Kondo N, Yamada M (1990b) Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94: 773–780

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Kondo N, Yamada M (1990c) Free fatty acids regulate two galactosyltransferases in chloroplast envelope membranes isolated from spinach leaves. Plant Physiol 94: 781–787

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Tanaka K, Yamada M (1994) General metabolic changes in leaf lipids in response to ozone. Plant Cell Physiol 35: 53–62

    CAS  Google Scholar 

  • Sharma YK, Davis KR (1994) Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol 105: 1089–1096

    PubMed  CAS  Google Scholar 

  • Shimazaki K, Sakaki T, Kondo N, Sugahara K (1980) Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2-fumigated leaves of spinach. Plant Cell Physiol 21: 1193–1204

    CAS  Google Scholar 

  • Shimazaki K, Yu SW, Sakaki T, Tanaka K (1992) Differences between spinach and kidney bean plants in terms of sensitivity to fumigation with NO2. Plant Cell Physiol 33: 267–273

    CAS  Google Scholar 

  • Smith LL (1987) Cholesterol autooxidation 1981–1986. Chem Phys Lipids 44: 87–125

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Sugahara K (1980) Role of superoxide dismutase in defense against SO2 toxicity and an increase in superoxide dismutase activity with SO2 fumigation. Plant Cell Physiol 21: 601–611

    CAS  Google Scholar 

  • Tanaka K, Suda Y, Kondo N, Sugahara K (1985) O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26:1425–1431

    CAS  Google Scholar 

  • Thomas H (1986) The role of polyunsaturated fatty acids in senescence. J Plant Physiol 123: 97–105

    CAS  Google Scholar 

  • Thomson WW (1975) Effects of air pollutants on plant ultrastructure. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, New York, pp 179–194

    Google Scholar 

  • Tomlinson H, Rich S (1970) Lipid peroxidation, a result of injury in bean leaves exposed to ozone. Phytopathology 60: 1531–1532

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson H, Rich S (1971) Effect of ozone on sterols and sterol derivatives in bean leaves. Phytopathology 61: 1404–1405

    Article  CAS  Google Scholar 

  • Trevathan LE, Moore LD, Orcutt DM (1979) Symptom expression and free sterol and fatty acid composition of flue-cured tobacco plants exposed to ozone. Phytopathology 69: 582–585

    Article  CAS  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inze D, Reupold-Popp P, Sandermann H Jr, Langebartels C (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technology 12: 165–168

    Article  Google Scholar 

  • Vick BA (1993) Oxygenated fatty acids of the lipoxygenase pathway. In: Moore TS Jr (ed) Lipid metabolism in plants. CRC Press, Boca Raton, pp 167–191

    Google Scholar 

  • Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Wang X (1993) Phospholipases. In: Moore TS Jr (ed) Lipid metabolism in plants. CRC Press, Boca Raton, pp 505–525

    Google Scholar 

  • Wanner L, Keller F, Matile P (1991) Metabolism of radiolabeled galactolipids in senescent barley leaves. Plant Sci 78: 199–206

    Article  CAS  Google Scholar 

  • Wellburn AR, Robinson DC, Thomson A, Leith ID (1994) Influence of episodes of summer O3 on delta-5 and delta-9 fatty acids in autumnal lipids of Norway spruce [Picea abies (L.) Karst]. New Phytol 127: 355–361

    Article  CAS  Google Scholar 

  • Whitaker BD, Lee EH, Rowland RA (1990) EDU and ozone protection: foliar glycerolipids and steryl lipids in snapbean exposed to O3. Physiol Plant 80: 286–293

    Article  CAS  Google Scholar 

  • Wolfenden J, Wellburn AR (1991) Effects of summer ozone on membrane lipid composition during subsequent frost hardening in Norway spruce [Picea abies (L.) Karst]. New Phytol 118: 323–329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer -Verlag Tokyo

About this chapter

Cite this chapter

Sakaki, T. (2002). Effects of Air Pollutants on Lipid Metabolism in Plants. In: Omasa, K., Saji, H., Youssefian, S., Kondo, N. (eds) Air Pollution and Plant Biotechnology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68388-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68388-9_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68390-2

  • Online ISBN: 978-4-431-68388-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics