Skip to main content

Responses of Whole Plants to Air Pollutants

  • Chapter
Book cover Air Pollution and Plant Biotechnology

Abstract

Air pollution refers to the condition in which the existence of toxic substances in the atmosphere, generated by various human activities and natural phenomena such as volcanic eruptions, results in damaging effects on the welfare of human beings and the living environment. Air pollution in advanced nations has treaded the following path of historical changes. Air pollution in urbanized cities first appeared as smoke (SOx, fly ash, or fumes), produced by the burning of coal by industrialized societies after the industrial revolution (i.e., “London-smog type” pollution). When the major fuel use switched from coal to petroleum and natural gas, the extent of smoke pollution decreased rapidly. However, rapid increases in population and transportation, in addition to industrial growth, resulted in a new form of pollution caused by auto exhaust and photochemical smog (i.e., “Los Angeles smog type” pollution). Photochemical smog is produced in the atmosphere by complex photochemical reactions involving nitrogen oxides and hydrocarbons from sources such as auto exhaust gases and electric power plants. A similarly serious air pollution problem has now emerged in large urban cities in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RM, Glyer JD, McCarl RA (1988) The NCLAN economic assessment: approach, findings and implications. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier, London, pp 473–504

    Chapter  Google Scholar 

  • Alscher RG, Bower JI, Zipfel W (1987) The basis for different sensitivities of photosynthesis to SO2 in two cultivars of pea. J Exp Bot 38: 99–108

    Article  CAS  Google Scholar 

  • Alscher RG, Wellburn AR (1994) Plant responses to the gaseous environment. Chapman & Hall, London

    Book  Google Scholar 

  • Asada K (1980) Formation and scavenging of superoxide in chloroplasts with relation to injury by sulfur oxides. In: National Institute of Environmental Studies (ed) Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. Res Report No. 11, pp 165–179

    Google Scholar 

  • Asada K, Kiso K (1973) Initiation of aerobic oxidation of sulphite by illuminated spinach chloroplasts. Eur J Biochem 33: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Ashenden TW, Bell SA (1987) Yield reductions in winter barley grown on a range of soils and exposed to simulated acid rain. Plant Soil 98: 433–437

    Article  CAS  Google Scholar 

  • Ashenden TW, Bell SA (1989) Growth responses of three legume species exposed to simulated acid rain. Environ Pollut 62: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Ashenden TW, Mansfield TA (1978) Extreme pollution sensitivity of grasses when SO2 and NO2 are present in the atmosphere together. Nature 273: 142–143

    Article  CAS  Google Scholar 

  • Ashenden TW, Bell SA, Rafarel CR (1990) Effects of nitrogen dioxide pollution on the growth of three fern species. Environ Pollut 66: 301–308

    Article  PubMed  CAS  Google Scholar 

  • Ashenden TW, Bell SA, Rafarel CR (1995) Responses of white clover to gaseous pollutants and acid mist: implications for setting critical levels and loads. New Phytol 130: 89–96

    Article  CAS  Google Scholar 

  • Bae GY, Nakajima N, Ishizuka K, Kondo N (1996) The role in ozone phytotoxicity of the evolution of ethylene upon induction of 1 -aminocyclopropane-1 -carboxylic acid synthase by ozone fumigation in tomato plants. Plant Cell Physiol 37: 129–134

    CAS  Google Scholar 

  • Bamberger ES, Avron M (1975) Site of action of inhibitors of carbon dioxide assimilation by whole lettuce chloroplasts. Plant Physiol 56: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Banwart WL (1988) Field evaluation of an acid rain-drought stress interaction. Environ Pollut 53: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Bell JNB (1980) Response of plants to sulphur dioxide. Nature 284: 399–400

    Article  Google Scholar 

  • Bell JNB (1982) Sulphur dioxide and growth of grasses. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworths, London, pp 225–246

    Google Scholar 

  • Benes SE, Murphy TM, Anderson PD, Houpis JU (1995) Relationship of antioxidants enzymes to ozone tolerance in branches of mature ponderosa pine (Pinus ponderosa) trees exposed to long-term, low concentration, ozone fumigation and acid precipitation. Physiol Plant 94: 123–134

    Article  Google Scholar 

  • Bennett JH, Hill AC (1973) Inhibition of apparent photosynthesis by air pollutants. J Environ Qual 2: 526–530

    Article  CAS  Google Scholar 

  • Bennett JH, Hill AC (1975) Interaction of air pollutants with canopies of vegetation. In: Mudd KB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, New York, pp 273–306

    Google Scholar 

  • Bressan RA, LeCureux L, Wilson LG, Filner P (1979) Emission of ethylene and ethane by leaf tissue exposed to injurious concentration of sulfur dioxide or bisulfite ion. Plant Physiol 63: 924–930

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM, Flint SD (1994) Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Clim Change 28: 375–394

    Article  CAS  Google Scholar 

  • Capron TM, Mansfield TA (1975) Generation of nitrogen oxide pollutions during CO2 enrichment of glasshouse atmospheres. J Hortic Sci 50: 233–238

    CAS  Google Scholar 

  • Castillo FJ, Heath RL (1990) Ca2+ transport in membrane vesicles from pinto bean leaves and its alteration after ozone exposure. Plant Physiol 94: 788–795

    Article  PubMed  CAS  Google Scholar 

  • Chameides WL (1989) The chemistry of ozone deposition to plant leaves: role of ascorbic acid. Environ Sci Technol 19: 1206–1213

    Google Scholar 

  • Chappelka AH, Chevone BI (1986) White ash seedling growth response to ozone and simulated acid rain. Can J For Res 16: 786–790

    Article  CAS  Google Scholar 

  • Chappelka AH, Chevone BI, Burk TE (1985) Growth response of yellow-poplar (Liriodendron tulipifera L.) seedlings to ozone, sulfur dioxide, and simulated acidic precipitation, alone and in combination. Environ Exp Bot 25: 233–244

    Article  CAS  Google Scholar 

  • Cooley DR, Manning WJ (1987) The impact of ozone on assimilate partitioning in plants: a review. Environ Pollut 47: 95–113

    Article  PubMed  CAS  Google Scholar 

  • Coulson CL, Heath RL (1975) The interaction of peroxyacetyl nitrate (PAN) with the. electron flow of isolated chloroplasts. Atmos Environ 9: 231–238

    Article  PubMed  CAS  Google Scholar 

  • Craker LE (1971) Ethylene production from ozone injured plants. Environ Pollut 1: 299–304

    Article  Google Scholar 

  • Dann MS, Pell EJ (1989) Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase in ozone-treated potato foliage. Plant Physiol 91: 427–432

    Article  PubMed  CAS  Google Scholar 

  • Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12: 1–30

    Article  CAS  Google Scholar 

  • Davis DD (1977) Response of ponderosa pine primary needle to separate and simultaneous ozone and PAN exposures. Plant Dis Rep 61: 640–644

    CAS  Google Scholar 

  • De Kok LJ, Stulen I (1993) Role of glutathione in plants under oxidative stress. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB Academic, The Hague, pp 295–313

    Google Scholar 

  • De Kok LJ, Stulen I (eds) (1998) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden.

    Google Scholar 

  • Dorminy PJ, Heath RL (1985) Inhibition of the K+-stimulated ATPase of the plasmalemma of pinto bean leaves by ozone. Plant Physiol 77: 43–45

    Article  Google Scholar 

  • Dugger WM Jr, Mudd JB, Koukol J (1965) Effect of PAN on certain photosynthetic reactions. Arch Environ Health 10: 195–200

    PubMed  CAS  Google Scholar 

  • Dugger WM Jr, Taylor OC, Klein WM, Shropshire W (1963) Action spectrum of peroxyacetyl nitrate damage to bean plants. Nature 198: 75–76

    Article  CAS  Google Scholar 

  • Elkiey T, Ormrod PP (1980) Response of turf grass cultivars to ozone, sulfur dioxide, nitrogen dioxide, or their mixtures. J Am Soc Hortic Sci 105: 664–668

    CAS  Google Scholar 

  • Elstner EF (1987) Ozone and ethylene stress. Nature 328: 482

    Article  Google Scholar 

  • Elstner EF, Osswald W, Youngman RJ (1985) Basic mechanisms of pigment bleaching and loss of structural resistance in spruce (Picea abies) needles: advances in phytomedical diagnostics. Experientia 41: 591–597

    Article  CAS  Google Scholar 

  • Evans KS, Lewin KF, Cunningham EA, Patti MJ (1982) Effects of simulated acid rain on yields of field-grown crops. New Phytol 91: 429–441

    Article  CAS  Google Scholar 

  • Evans LS, Lewin KF, Patti MJ (1984) Effects of simulated acid rain on yields of field-grown soybeans. New Phytol 96: 207–213

    Article  CAS  Google Scholar 

  • Evans LS, Lewin KF, Owen EL, Santucci KA (1986) Comparison of yields of several cultivars of field-grown soybeans exposed to simulated acidic rainfalls. New Phytol 102: 409–417

    Article  Google Scholar 

  • Fiscus EL, Booker FL (1995) Is increased UV-B a threat to crop photosynthesis and productivity? Photosynth Res 43: 81–92

    Article  CAS  Google Scholar 

  • Fiscus EL, Reid CD, Miller JE, Heagle AS (1997) Elevated CO2 reduces O3 flux and O3- induced yield losses in soybeans: possible implications for elevated CO2 studies. J Exp Bot 48: 307–313

    Article  CAS  Google Scholar 

  • Fredrick P, Heath RL (1975) Ozone-induced fatty acid and viability changes in Chlorella. Plant Physiol 55: 15–19

    Article  Google Scholar 

  • Furukawa A (1984) Photosynthesis inhibition of higher plants by various air pollutants. Res Rep Natl Inst Environ Studies Jpn 64: 131–139 (in Japanese)

    CAS  Google Scholar 

  • Furukawa A, Natori T, Totsuka T (1980) The effect of SO2 on net photosynthesis in sunflower leaf. Res Rep Natl Inst Environ Studies Jpn 11: 1–8

    CAS  Google Scholar 

  • Gezeilus K, Hallgren JE (1980) Effect of SO32- on the activity of ribulose biphosphate carboxylase from seedlings of Pinus sylvestris. Physiol Plant 49: 354–358

    Article  CAS  Google Scholar 

  • Ghisi R, Dittrich APM, Herber U (1990) Oxidation versus reductive detoxification of SO2 by chloroplasts. Plant Physiol 92: 842–849

    Article  Google Scholar 

  • Guderian R (ed) (1985a) Air pollution by photochemical oxidants. Springer-Verlag, Berlin

    Google Scholar 

  • Guderian R (1985b) Effects of pollutant combination. In: Guderian R (ed) Air pollution by photochemical oxidants. Springer-Verlag, Berlin, pp 246–275

    Chapter  Google Scholar 

  • Hashida S (1965) Soil scientific and nutritional problems of cultivation in plastic greenhouses (in Japanese). Dojou Hiryou Gaku Zasshi (Jpn J Soil Sci Plant Nutr) 36: 274–284

    Google Scholar 

  • Heagle AS, Body BE, Nealy GE (1974) Injury and yield responses of soybean to chronic doses of ozone and sulfur dioxide in the field. Phytopathology 64: 132–136

    Article  CAS  Google Scholar 

  • Heagle AS, Heck WW, Rawlings JO, Philbeck RB (1983) Effects of chronic doses of ozone and sulfur dioxide on injury and yield of soybeans in open-top chambers. Crop Sci 23: 1184–1191

    Article  CAS  Google Scholar 

  • Heagle AS, Miller JE, Pursley WA (1998) Influence of ozone stress on soybean response to carbon dioxide enrichment. III. Yield and seed quality. Crop Sci 38: 128–134

    Article  CAS  Google Scholar 

  • Heath RL (1980) Initial events in injury to plants by air pollutants. Annu Rev Plant Physiol 31: 395–431

    Article  CAS  Google Scholar 

  • Heath RL (1987) The biochemistry of ozone attack on the plasma membrane of plant cells. Rec Adv Photochem 21: 29–54

    CAS  Google Scholar 

  • Heath RL, Taylor GE (1997) Physiological processes and plant responses to ozone exposure. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone, Springer-Verlag, Berlin, pp 317–368

    Chapter  Google Scholar 

  • Heck WW, Taylor OC, Tingey DT (eds) (1988) Assessment of crop loss from air pollutants. Elsevier, London

    Google Scholar 

  • Hewitt CN, Kok GL, Fall R (1990) Hydroperoxides in plants exposed to ozone mediate air pollution damage to alkene emitter. Nature 344: 56–58

    Article  PubMed  CAS  Google Scholar 

  • Hosono T, Nouchi I (1992) Effects of simulated acid rain on the growth of radish, spinach and bush bean plants. Taiki Osen Gakkaishi (J Jpn Soc Air Pollut) 27: 111–121 (in Japanese with English summary)

    Google Scholar 

  • Hosono T, Nouchi I (1994) Effects of simulated acid rain on growth, yield and net-photosynthesis of several agricultural crops. Nougyo Kisho (J Agric Meteorol) 50: 121–127 (in Japanese with English summary)

    Google Scholar 

  • Hossain MA, Asada K (1984) Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate. Plant Cell Physiol 25: 1285–1295

    CAS  Google Scholar 

  • Irving PM (1983) Acidic precipitation effects on crops: a review and analysis of research. J Environ Qual 12: 442–453

    Article  CAS  Google Scholar 

  • Irving PM (1985) Modeling the response of greenhouse-grown radish plants to acid rain. Environ Exp Bot 25: 327–338

    Article  CAS  Google Scholar 

  • Irving PM (1987) Effects on agricultural crops. In: National Acid Precipitation Assessment Program (NAPAP). Interim assessment: the cause and effects of acidic deposition, vol IV. NAPAP, Washington, DC, pp 6. 1–6. 50

    Google Scholar 

  • Jacob B, Heber U (1998) Apoplastic ascorbate does not prevent the oxidation of fluorescent amphiphilic dyes by ambient and elevated concentrations of ozone in leaves. Plant Cell Physiol 39: 313–322

    Google Scholar 

  • Jacobson JS, Colavito LJ (1976) The combined effect of sulfur dioxide and ozone on bean and tobacco plants. Environ Exp Bot 16: 277–285

    Article  CAS  Google Scholar 

  • Jacobson JS, Irving PM, Kuja A, Lee J, Sjriner DS, Troiano J, Perrigan S, Cullinan V (1988) A collaborative effort to model plant response to acidic rain. J Air Pollut Control Assoc 38: 777–783

    CAS  Google Scholar 

  • John WW, Curtis RW (1977) Isolation and identification of the precursor of ethane in Phaseolus vulgaris L. Plant Physiol 59: 521–522

    Article  PubMed  CAS  Google Scholar 

  • Johnson JW, Shriner DS (1986) Yield responses of Davis soybean to simulated acid rain and gaseous pollutants. New Phytol 103: 695–707

    Article  Google Scholar 

  • Kangasjärvi J, Talvien J, Utriainen M, Katjalainen R (1994) Plant defense system induced by ozone. Plant Cell Environ 17: 783–794

    Article  Google Scholar 

  • Kanofsky JR, Sima PD (1995) Reactive absorption of ozone by aqueous biomolecule solutions: implications for the role of sulfhydryl compounds as targets for ozone. Arch Biochem Biophys 316: 52–62

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Kobayashi K, Nouchi I, Yoneyama T (1996) Enhanced UV-B radiation has little effect on growth 13C values and pigments of pot-grown rice (Oryza sativa) in the field. Physiol Plant 96: 1–5

    Article  Google Scholar 

  • Kobayashi K (1992) Modeling and assessing the impact of ozone on rice growth and yield. In: Bergland RL (ed) Tropospheric ozone and the environment. II: Effects, modeling and control. Air and Waste Management Association, Pittsburgh, pp 537–551

    Google Scholar 

  • Kobayashi K, Okada M (1995) Effects of ozone on the light use of rice (Oryza sativa L.) plants. Agric Ecosyst Environ 53: 1–12

    Article  CAS  Google Scholar 

  • Kohut RJ, Davis DD, Merrill W (1976) Response of hybrid poplar to simultaneous exposure to ozone and PAN. Plant Dis Rep 60: 777–780

    CAS  Google Scholar 

  • Kondo N, Saji H (1992) Tolerance of plants to air pollutants (in Japanese with English summary). Taiki Osen Gakkaishi (J Jpn Soc Air Pollut) 27: 273–288

    CAS  Google Scholar 

  • Koukol J, Dugger WM Jr, Palmer RL (1967) Inhibitory effect of peroxyacetyl nitrate on cyclic photophosphorylation by chloroplasts from black valentine bean leaves. Plant Physiol 42: 1419–1422

    Article  PubMed  CAS  Google Scholar 

  • Kress LW, Skelly JM (1982) Response of several eastern forest tree species to chronic doses of ozone and nitrogen dioxide. Plant Dis 66: 1149–1152

    Article  CAS  Google Scholar 

  • Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H (1991) Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95: 882–889

    Article  PubMed  CAS  Google Scholar 

  • Law RM, Mansfield TA (1982) Oxides of nitrogen and the greenhouse atmosphere. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworths, London, pp 93–112

    Google Scholar 

  • Lea PJ, Robinson SA, Stewart GR (1990) The enzymology and metabolism of glutamine, glutamate and asparagines. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants, vol, 16. Academic Press, New York, pp 121–159

    Google Scholar 

  • Lee JJ, Neely GE, Perrjiean SC, Grothaus LC (1981) Effects of simulated sulfuric acid rain on yield, growth and foliar injury of several crops. Environ Exp Bot 21: 171–185

    Article  CAS  Google Scholar 

  • Lefohn AS (ed) (1991) Surface-level ozone exposures and their effects on vegetation. Lewis, Chelsea

    Google Scholar 

  • Luwe M, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101: 969–976

    PubMed  CAS  Google Scholar 

  • Malhotra SS, Khan AA (1984) Biochemical and physiological impact of major pollutants. In: Treshow M (ed) Air pollution and plant life. Wiley, Chichester, pp 113–157

    Google Scholar 

  • Matsumura H, Kobayashi T, Kohno Y (1998) Effects of ozone and/or simulated acid rain on dry weight and gas exchange rates of Japanese cedar, Nikko fir, Japanese white birch and Japanese zelkova seedlings (in Japanese with English summary). Taiki Kankyo Gakkaishi (J Jpn Soc Atmos Environ) 33: 16–35

    CAS  Google Scholar 

  • Matyssek R, Havranek WM, Wieser G, Innes JL (1997) Ozone and forests in Austria and Switzerland. In: Sanderman H, Wellburn AR, Heath RL (eds) Forest decline and ozone. Springer-Verlag, Berlin, pp 95–134

    Chapter  Google Scholar 

  • McKee IF, Bullimore JF, Long SP (1997) Will elevated CO2 concentrations protect the yield of wheat from O3 damage ? Plant Cell Environ 18: 215–225

    Google Scholar 

  • Mehlhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327: 417–418

    Article  CAS  Google Scholar 

  • Mehlhorn H, Tabner B, Wellburn AR (1990) Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiol Plant 79: 377–383

    Article  CAS  Google Scholar 

  • Mehlhorn H, O’Shea JM, Wellburn AR (1991) Atmospheric ozone interacts with stress ethylene formation by plants to cause visible plant injury. J Exp Bot 42: 17–24

    Article  CAS  Google Scholar 

  • Mehlhorn H, Seufert G, Schmidt A, Kunert KJ (1986) Effects of SO2 and O3 on production of antioxidants in conifers. Plant Physiol 82: 336–338

    Article  PubMed  CAS  Google Scholar 

  • Menser HA, Heggestad HE (1966) Ozone and sulfur dioxide synergism: injury to tobacco plants. Science 153: 424–425

    Article  PubMed  CAS  Google Scholar 

  • Middleton JR, Kendrick JB Jr, Schwalm HW (1950) Injury to herbaceous plants by smog or air pollution. Plant Dis Rep 34: 245–252

    CAS  Google Scholar 

  • Miller JE (1987) Effects of ozone and sulfur dioxide stress on growth and carbon allocation in plants. Rec Adv Phytochem 21: 55–100

    CAS  Google Scholar 

  • Miller PR, Arbaugh MJ, Temple PJ (1997) Ozone and its known and potential effects on forests in western United States. In: Sanderman H, Wellburn AR, Heath RL (eds) Forest decline and ozone. Springer, Berlin, pp 39–67

    Chapter  Google Scholar 

  • Miller JE, Booker FL, Fiscus EL, Heagle AS, Pursley WA, Vozzo S, Heck WW (1994) Ultraviolet-B radiation and ozone effects on growth, yield and photosynthesis of soybean. J Environ Qual 23: 83–91

    Article  CAS  Google Scholar 

  • Mudd JB (1963) Enzyme inactivation by peroxyacetyl nitrate. Arch Biochem Biophys 102: 59–65

    Article  PubMed  CAS  Google Scholar 

  • Mudd JB (1996) Biochemical basis for the toxicity of ozone. In: Iqbal M, Yunus M (eds) Plant responses to air pollution. Willy, Chichester, pp 267–283

    Google Scholar 

  • Mudd JB (1973) Biochemical effects of some air pollutants on plants. Adv Chem Ser 122: 31–47

    Article  Google Scholar 

  • Mudd JB (1975a) Sulfur dioxide. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, New York, pp 9–22

    Google Scholar 

  • Mudd JB (1975b) Peroxyacyl nitrates. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, New York, pp 97–119

    Google Scholar 

  • Mudd JB, Dugger WM Jr (1963) The oxidation of pyridine nucleotides by peroxyacyl nitrates. Arch Biochem Biophys 102: 52–58

    Article  PubMed  CAS  Google Scholar 

  • Mudd JB, Kozlowski TT (eds) (1975) Responses of plants to air pollution, Academic Press, New York

    Google Scholar 

  • Mulchi CL, Slaughter L, Saleem M, Lee EH, Pausch R, Rowland R (1992) Growth and physiological characteristics of soybean in open-top chambers in response to ozone and increased atmospheric CO2. Agric Ecosyst Environ 38: 107–118

    Article  CAS  Google Scholar 

  • Nakamura H, Saka H (1978) Photochemical oxidants injury in rice plants, III: Effect of ozone on physiological activities in rice plants (in Japanese with English summary). Nippon Sakumotsu Gakkai Kiji (Jpn J Crop Sci) 47: 707–714

    Article  CAS  Google Scholar 

  • Norby RJ, Luxmoore RJ (1983) Growth analysis of soybean exposed to simulated acid rain and gaseous air pollutants. New Phytol 95: 277–287

    Article  CAS  Google Scholar 

  • Norby RJ, Richer DD, Luxmoore RJ (1985) Physiological process in soybean inhibited by gaseous pollutants but not by acid rain. New Phytol 100: 79–85

    Article  CAS  Google Scholar 

  • Nouchi I (1979) Effects of ozone and PAN concentrations and exposure duration on plant injury (in Japanese with English summary). Taiki Osen Gakkaishi (J Jpn Soc Air Pollut) 14: 489–496

    CAS  Google Scholar 

  • Nouchi I (1988) Leaf injury of plants and mechanism of injury by photochemical oxidants (ozone and peroxyacetyl nitrate) (in Japanese with English summary). Bull Natl Inst Agro-Environ Sci 5: 1–121

    CAS  Google Scholar 

  • Nouchi I (1992) Acid precipitation in Japan and its impact on plants. 1. Acid precipitation and foliar injury. JARQ 26: 171–177

    CAS  Google Scholar 

  • Nouchi I (1993) Changes in antioxidant levels and activities of related enzymes in rice leaves exposed to ozone. Soil Sci Plant Nutr 39: 309–320

    Article  CAS  Google Scholar 

  • Nouchi I, Mayumi H, Yamazoe F (1984a) Foliar injury response of petunia and kidney bean to simultaneous and alternate exposures to ozone and PAN. Atmos Environ 18: 453–460

    Article  CAS  Google Scholar 

  • Nouchi I, Ohashi T, Sofuku M (1984b) Atmospheric PAN concentrations and foliar injury to petunia indicator plants in Tokyo (in Japanese with English summary). Taiki Osen Gakkaishi (J Jpn Soc Air Pollut) 19: 392–402

    Google Scholar 

  • Nouchi I, Toyama S (1988) Effects of ozone and peroxyacetyl nitrate on polar lipids and fatty acids in leaves of morning glory and kidney bean. Plant Physiol 87: 638–646

    Article  PubMed  CAS  Google Scholar 

  • Okano K, Ito O, Takeba G, Shimizu A, Totsuka T (1984) Alteration of 13C-acculimate partitioning in plants of Phaseolus vurgaris exposed to ozone. New Phytol 97: 155–163

    Article  CAS  Google Scholar 

  • Oltmans DJ, Lefohn AS, Scheel HE, Harris JM, Levy H II, Galbally IE, Brunke EG, Meyer CP, Lathrop JA, Johnson BJ, Shadwick DS, Cuevas E, Schmidlin FJ, Tarasick DW, Claude H, Kerr JB, Uchino O, Mohnen V (1998) Trends of ozone in the troposphere. Geophys Res Lett 25: 139–142

    Article  CAS  Google Scholar 

  • Ormrod DP (ed) (1978) Pollution in horticulture. Elsevier, New York

    Google Scholar 

  • Ormrod DP (1982) Air pollutant interactions in mixtures. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworths, London, pp 307–331

    Google Scholar 

  • Pauls KP, Thompson JE (1981) Effects of in vitro treatment with ozone on physical and chemical properties of membranes. Physiol Plant 53: 255–262

    Article  CAS  Google Scholar 

  • Peiser GD, Yang SF (1979) Ethylene and ethane production from sulfur dioxide-injured plants. Plant Physiol 63: 142–145

    Article  PubMed  CAS  Google Scholar 

  • Pell EJ, Pearson NS (1983) Ozone-induced reduction in quantity of ribulose-1,5-bisphosphate carboxylase in alfalfa foliage. Plant Physiol 73: 185–187

    Article  PubMed  CAS  Google Scholar 

  • Pell EJ, Eckardt NA, Enyedi AJ (1992) Timing of ozone stress and resulting status of ribulose bisphosphate acrboxylase/oxygenase and associated net photosynthesis. New Phytol 120: 387–405

    Article  Google Scholar 

  • Pell EJ, Landry LG, Eckardt NA, Glick RE (1994) Air pollution and Rubisco: effects and implications. In: Alscher RG, Wellburn AR (eds) Plant responses to the gaseous environment. Chapman & Hall, London, pp 239–253

    Chapter  Google Scholar 

  • Polle A, Junkermann W (1994) Inhibition of apoplastic and symplastic peroxidase activity from Norway spruce by the photooxidant hydroxymethyl hydroperoxide. Plant Physiol 104: 617–621

    PubMed  CAS  Google Scholar 

  • Rautenkranz AAF, Li L, Machler F, Martinoia E, Oertli JJ (1994) Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves. Plant Physiol 106: 187–193

    PubMed  CAS  Google Scholar 

  • Rebbeck J, Brennan E (1984) The effect of simulated acid rain and ozone on the yield and quality of glasshouse-grown alfalfa. Environ Pollut Ser A 36: 7–16

    CAS  Google Scholar 

  • Reinert RA, Gray TN (1981) The response of radish to nitrogen dioxide, sulfur dioxide, and ozone, alone and in combination. J Environ Qual 10: 240–243

    Article  CAS  Google Scholar 

  • Reinert RA, Heagle AS, Heck WW (1975) Plant response to pollutant combination. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, New York, pp 159–177

    Google Scholar 

  • Rennenberg H (1984) The fate of excess sulfur in higher plants. Annu Rev Plant Physiol 35: 121–153.

    Article  CAS  Google Scholar 

  • Rennenberg H, Polle A, Reuther M (1997) Role of ozone in forest decline on Wank mountain (Alps). In: Sanderman H, Wellburn AR, Heath RL (eds) Forest decline and ozone. Springer-Verlag, Berlin, pp 135–162

    Chapter  Google Scholar 

  • Runeckles VC (1984) Impact of air pollutant combinations on plants. In: Treshow M (ed) Air pollution and life. Wiley, Chichester, pp 239–258

    Google Scholar 

  • Runeckles VC, Chevone BI (1991) Crop responses to ozone. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis, Chelsea, pp 157–270

    Google Scholar 

  • Runeckles VC, Krupa SV (1994) The impact of UV-B radiation and ozone on terrestrial vegetation. Environ Pollut 83: 191–213

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T (1998) Photochemical oxidants: toxicity. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 117–129

    Google Scholar 

  • Sakaki T, Kondo N, Sugahara K (1983) Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiol Plant 59: 28–34

    Article  CAS  Google Scholar 

  • Sakaki T, Ohnishi J, Kondo N, Yamada M (1985) Polar and neutral lipid changes in spinach leaves with ozone fumigation: triacylglycerol synthesis from polar lipids. Plant Cell Physiol 26: 253–262

    CAS  Google Scholar 

  • Sakaki T, Saito K, Kawaguchi A, Kondo N, Yamada M (1990a) Conversion of monogalacosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94: 766–772

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Kondo N, Yamada M (1990b) Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94: 773–780

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Kondo N, Yamada M (1990c) Free fatty acids regulate two galactosyltransferases in chloroplast envelope membranes isolated from spinach leaves. Plant Physiol 94: 781–787

    Article  PubMed  CAS  Google Scholar 

  • Sanders JS, Reinert RA (1982) Screening azalea cultivars for sensitivity to nitrogen dioxide, sulfur dioxide, and ozone alone and in mixtures. J Am Soc Hortic Sci 107: 87–90

    CAS  Google Scholar 

  • Sandermann H, Wellburn AR, Heath RL (ed) (1997) Forest decline and ozone. Springer- Verlag, Berlin

    Google Scholar 

  • Scandalios JG (1994) Molecular biology of superoxide dismutase. In: Alscher RG, Wellburn AR (eds) Plant responses to the gaseous environment. Chapman & Hall, London, pp 147–164

    Chapter  Google Scholar 

  • Schreiber U, Vidaver W, Runeckles VC, Rosen P (1978) Chlorophyll fluorescence assay for ozone injury in intact plants. Plant Physiol 61: 80–84

    Article  PubMed  CAS  Google Scholar 

  • Schütt P, Cowling EB (1985) Waldsterben, a general decline of forest in central Europe: symptoms, development and possible causes. Plant Dis 69: 548–558

    Google Scholar 

  • Sen Gupta A, Alsher RG, McCune D (1991) Response of photosynthesis and cellular antioxidants to ozone in Populus leaves. Plant Physiol 96: 650–655

    Article  CAS  Google Scholar 

  • Shaw PJA, Holland MR, Darrall NM, McLead AR (1993) The occurrence of SO2-related foliar symptoms on Scots pine (Pinus sylvestris L.) in an open-air forest fumigation experiment. New Phytol 123: 143–152

    Article  CAS  Google Scholar 

  • Shimazaki K (1988) Thylakoid membrane reactions to air pollutants. In: Schulte-Hostede S, Darrnall NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elsevier, London, pp 116–133

    Google Scholar 

  • Shimazaki K, Sugahara K (1979) Specific inhibition of photosystem II activity in chloroplasts by fumigation of spinach leaves with SO2. Plant Cell Physiol 20: 26–35

    Google Scholar 

  • Shimazaki K, Yu SW, Sakaki T, Tanaka K (1992) Differences between spinach and kidney bean plants in terms of sensitivity to fumigation with NO2. Plant Cell Physiol 33: 267–273

    CAS  Google Scholar 

  • Shimizu H, Oikawa T, Totsuka T (1984) Effects of low concentration of NO2 and O3 alone and in mixture on growth of sunflower plants. Res Rep Natl Inst Environ Studies Jpn 65: 121–136

    CAS  Google Scholar 

  • Skelly JM, Chappelka AH, Laurence JA, Frsdericksen TS (1997) Ozone and its known and potential effects on forests in Eastern United States. In: Sanderman H, Wellburn AR, Heath RL (eds) Forest decline and ozone. Springer-Verlag, Berlin, pp 69–93

    Chapter  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol 41: 225–253

    Article  CAS  Google Scholar 

  • Srivastava HS, Ormrod DP (1984) Effects of nitrogen dioxide and nitrate nutrition on growth and nitrite assimilation in bean leaves. Plant Physiol 76: 418–423

    Article  PubMed  CAS  Google Scholar 

  • Sugahara K, Ogura K, Takimoto M, Kondo N (1984) Effects of air pollutant mixtures on photosynthetic electron transport systems. Res Rep Natl Inst Environ Studies Jpn 65: 155–165

    CAS  Google Scholar 

  • Takeuchi Y, Nihira J, Kondo N, Tezuka T (1985) Change in nitrate-reducing activity in spinach seedlings with NO2 fumigation. Plant Cell Physiol 26: 1027–1035

    CAS  Google Scholar 

  • Tanaka K, Sugahara K (1980) Role of superoxide dismutase in defense against SO2 toxicity and an increase in superoxide dismutase activity with SO2 fumigation. Plant Cell Physiol 21: 601–611

    CAS  Google Scholar 

  • Tanaka K, Kondo N, Sugahara K (1982) Accumulation of hydrogen peroxide in chloroplasts of SO2 fumigated spinach leaves. Plant Cell Physiol 23: 999–1007

    CAS  Google Scholar 

  • Tanaka K, Suda Y, Kondo N, Sugahara K (1985) 03 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26: 1425–1431

    Google Scholar 

  • Tanaka K, Saji H, Kondo N (1988) Immunological properties of spinach glutathione reductase and inductive biosynthesis of enzyme with ozone. Plant Cell Physiol 29: 637–642

    CAS  Google Scholar 

  • Taylor OC (1969) Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant. J Air Pollut Control Assoc 19: 347–351

    PubMed  CAS  Google Scholar 

  • Taylor GE (1978) Genetic analysis of ecotypic differentiation within annual plant species, Geranium carolinianum L., in response to sulfur dioxide. Bot Gaz 139: 362–368

    Article  CAS  Google Scholar 

  • Temple PJ, Taylor OC (1983) World-wide ambient measurements of peroxuacetyl nitrate (PAN) and implications for plant injury. Atmos Environ 17: 1583–1587

    Article  CAS  Google Scholar 

  • The National Research Council of Canada (1939) Effect of sulphur dioxide on vegetation. National Research Council of Canada Publication 815

    Google Scholar 

  • Thompson JE, Legge RL, Barber RF (1987) The role of free radicals in senescence and wounding. New Phytol 105: 317–344

    Article  CAS  Google Scholar 

  • Tingey DT, Reinert RA (1975) The effect of ozone and sulfur dioxide singly and in combination on plant growth. Environ Pollut 9: 117–125

    Article  CAS  Google Scholar 

  • Tingey DT, Standley C, Field RW (1976) Stress ethylene evolution: a measure of ozone effects on plants. Atmos Environ 10: 969–974

    Article  PubMed  CAS  Google Scholar 

  • Treshow M (ed) (1984) Air pollution and plant life. Wiley, Chichester

    Google Scholar 

  • Treshow M, Anderson FK (eds) (1991) Plant Stress from Air Pollution. Wiley, Chischester, pp 61–76

    Google Scholar 

  • Troiano J, Heller L, Jacobson JS (1982) Effects of added water and acidity of simulated rain on growth of field-grown radish. Environ Pollut Ser A 29: 1–11

    CAS  Google Scholar 

  • Ulrich B, Mayer R, Khanna PK (1983) Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci 130: 193–199

    Article  Google Scholar 

  • Unsworth MH, Geissler P (1993) Results and achievements of European Open-top Chamber Network. In: Jäger HJ, Unsworth MH, De Temmerman L, Mathy P (eds) Effects of air pollution on agricultural crops in Europe. Commission of the European Communities, Brussels, pp 5–22

    Google Scholar 

  • UN-ECE (1994) Workshop report 16. ECE Critical Levels Workshop (Fuher J, ed), March 1988. Bad Harzburg, Germany

    Google Scholar 

  • UN-ECE (1996) Critical levels for ozone in Europe: testing and finalisting the concepts. Department of Ecology and Environment Science, University of Kuopio, Finland

    Google Scholar 

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115: 395–429

    Article  CAS  Google Scholar 

  • Wellburn AR (ed) (1994a) Air pollution and climate change, 2nd edn. Longman, Essex

    Google Scholar 

  • Wellburn AR (1994b) Ozone, PAN and photochemical smog. In: Wellburn AR (ed) Air pollution and climate change, 2nd edn. Longman, Essex, pp 123–144

    Google Scholar 

  • Wellburn AR, Higginson C, Robinson D, Walmsley C (1981) Biochemical explanations of more than additive inhibitory low atmospheric levels of SO2 + NO2 upon plants. New Phytol 88: 223–237

    Article  CAS  Google Scholar 

  • Wright EA (1987) Effects of S02 and N02, singly or in mixture, on the macroscopic growth of three birch clones. Environ Pollut 46: 209–221

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189

    Article  CAS  Google Scholar 

  • Yoneyama T, Sasakawa H (1979) Transformation of atmospheric NO2 absorbed in spinach leaves. Plant Cell Physiol 20: 263–266

    CAS  Google Scholar 

  • Yoneyama T, Sasakawa H, Ishizuka S (1979) Absorption of atmospheric NO2 by plants and soils. II: Nitrite accumulation, nitrite reductase activity, and diurnal change, of NO2 absorption in leaves. Soil Sci Plant Nutr 25: 267–275

    CAS  Google Scholar 

  • Zeevaart AJ (1976) Some effects of fumigating plants for short periods with NO2. Environ Pollut 11: 97–108

    Article  CAS  Google Scholar 

  • Ziegler I (1972) The effects of SO32− on the activity of ribulose-1,5-diphosphate carboxylase in isolated spinach chloroplasts. Planta 103: 155–163

    Article  CAS  Google Scholar 

  • Ziegler I (1973) The effect of air polluting gases on plant metabolism. Environ Qual Safe 2: 182–208

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer -Verlag Tokyo

About this chapter

Cite this chapter

Nouchi, I. (2002). Responses of Whole Plants to Air Pollutants. In: Omasa, K., Saji, H., Youssefian, S., Kondo, N. (eds) Air Pollution and Plant Biotechnology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68388-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68388-9_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68390-2

  • Online ISBN: 978-4-431-68388-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics