Advertisement

Heart Failure pp 219-226 | Cite as

Gene Therapy for Myocardial Infarction: A Real Medicine in the Next Millenium?

  • Ryuichi Morishita
  • Motokuni Aoki
  • Hidenori Nakagami
  • Yoshiaki Taniyama
  • Kei Yamamoto
  • Hidetsugu Matsushita
  • Keiko Matsumoto
  • Jitsuo Higaki
  • Yasufumi Kaneda
  • Toshio Ogihara
Conference paper

Abstract

Recently, gene therapy has been the center of interest in the treatment of cardiovascular diseases. One of the major targets for gene therapy is myocardial infarction. In this chapter, we discuss two potential gene therapy strategies:
  1. (1)

    replication of dead myocytes by genetically modified cardiac myocytes, and

     
  2. (2)

    prevention of myocardial infarction by NFкB decoy ODN. The use of genetically modified cells for the delivery of recombinant molecules has emerged as a powerful tool for ex vivo gene therapy. For the application of ex vivo gene therapy to cardiac diseases, we examined the potential of cell grafting into the intact heart. Of importance, survival of myocyte grafts was observed in the noninfarcted and border-zone areas but not in the infarcted area. Targeted expression of recombinant molecules in intracardiac grafts could induce a beneficial response in the myocardium. Another potential target is the essential transcription factor, NFкB, as NFкB plays a pivotal role in the coordinated transactivation of cytokine and adhesion molecule genes. In vivo transfection of NFкB decoy digodeoxynudeotides (ODN) into the coronary artery before as well as after reperfusion resulted in a marked decrease in the infarcted area. We have reported the first successful gene therapy for myocardial infarction using NFкB decoy ODN. In this chapter, we also discussed the future direction of gene therapy for myocardial infarction.

     

Key words

cis-Element decoy Hemagglutinating virus of Japan (HVJ)-liposome method Myocardial infarction Transplantation Gene therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin H, Parmacek MS, Morle G. Bolling S, Leiden JM (1990) Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 82: 2217–2221PubMedCrossRefGoogle Scholar
  2. 2.
    Schneider MD, French BA (1993) The advent of adenovirus gene therapy for cardiovascular disease. Circulation 88: 1937–1942PubMedGoogle Scholar
  3. 3.
    Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T (1993) Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 73: 1202–1207PubMedGoogle Scholar
  4. 4.
    French BA, Mazur W, Geske RS, Bolli R (1994) Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 90: 2414–2424PubMedGoogle Scholar
  5. 5.
    Barr E, Carroll JC, Kalynych AM, Tripathy SK, Kozarski, Wilson JM, Leiden JM (1994) Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Ther 1: 51–58PubMedGoogle Scholar
  6. 6.
    Dzau VJ, Morishita R, Gibbons GH (1993) Gene therapy in the cardiovascular diseases. Trends Biotechnol 11: 205–210PubMedCrossRefGoogle Scholar
  7. 7.
    Morishita R, Gibbons GH, Ellison KE, Nakajima M, Zhang L. Kaneda Y, Ogihara T, Dzau VJ (1993) Single intraluminal delivery of antisense cdc 2 kinase and PCNA oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci USA 90: 8474–8479Google Scholar
  8. 8.
    Morishita R, Gibbons GH, Ellison KE, Nakajima M, Leyen HVL, Zhang L, Kaneda Y, Ogihara T, Dzau VJ (1994) Intimai hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. J Clin Invest 93: 1458–1464PubMedCrossRefGoogle Scholar
  9. 9.
    Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakajima M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ (1995) A novel molecular strategy using cis element “decoy” of E2F binding site inhibits smooth muscle proliferation in vivo. 92: 5855–5859Google Scholar
  10. 10.
    Kaneda Y, Iwai K, Uchida T (1989) Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science 243: 375–378PubMedCrossRefGoogle Scholar
  11. 11.
    Tornita N, Higaki J, Morishita R, Kato K, Mikami H, Kaneda Y, Ogihara T (1992) Direct in vivo gene introduction into rat kidney. Biochem Biophys Res Commun 186: 129–134CrossRefGoogle Scholar
  12. 12.
    Aoki M, Morishita R, Muraishi A, Moriguchi A, Sugimoto T, Maeda K, Dzau VJ, Kaneda Y, Higaki J, Ogihara T (1997) Efficient in vivo gene transfer into heart in rat myocardial infarction model using HVJ (hemagglutinating virus of Japan)-liposome method. J Mol Cell Cardiol 29: 949–959PubMedCrossRefGoogle Scholar
  13. 13.
    Dzau VJ, Mann MT, Morishita R, Kaneda Y (1996) Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci USA 93: 11421–11425PubMedCrossRefGoogle Scholar
  14. 14.
    Aoki M, Morishita R, Higaki J, Moriguchi A, Kida I, Hayashi S, Matsushita H, Kaneda Y, Ogihara T (1997) In vivo transfer efficiency of antisense oligonucleotides into the myocardium using HVJ-liposome method. Biochem Biophys Res Commun 231: 540–545PubMedCrossRefGoogle Scholar
  15. 15.
    Koh GY, Kim SJ, Klug MG, Park K, Soonpaa MH, Field LJ (1995) Targeted expression of transforming growth factor-ß, in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest 95: 114–121PubMedCrossRefGoogle Scholar
  16. 16.
    Soonpaa MH, Koh GY, Klug MG, Field LT (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264: 98–101PubMedCrossRefGoogle Scholar
  17. 17.
    Aoki M, Morishita R, Higaki J, Moriguchi A, Hayashi S, Matsushita H, Kida I, Tornita N, Sawa Y, Kaneda Y, Ogihara T (1997) Survival of grafts of genetically modified cardiac myocytes transfected with FITC-labeled oligodeoxynucleotides and ß-galactosidase gene in non-infarcted area, but not myocardial infarcted area. Gene Ther 4: 120–127PubMedCrossRefGoogle Scholar
  18. 18.
    Morishita R, Higaki J, Tornita N, Ogihara T (1998) Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res 82: 1023–1028PubMedGoogle Scholar
  19. 19.
    Morishita R, Sugimoto T, Aoki M, Kida I, Tornita N, Moriguchi A, Maeda K, Sawa Y, Kaneda Y, Higaki J, Ogihara T (1997) In vivo transfection of cis element “decoy” against NFicB binding site prevented myocardial infarction as gene therapy. Nat Med 3: 894–899PubMedCrossRefGoogle Scholar
  20. 20.
    Sawa Y, Morishita R, Suzuki K, Kagisaki K, Kaneda Y, Maeda K, Kadoba K, Matsuda H (1997) A novel strategy for myocardial protection using in vivo transfection of cis element “decoy” against NFiB binding site: evidence for a role of NFiB in ischemic-reperfusion injury. Circulation 96: II-280-II-285Google Scholar

Copyright information

© Springer-Verlag Tokyo 2000

Authors and Affiliations

  • Ryuichi Morishita
    • 1
    • 2
  • Motokuni Aoki
    • 2
  • Hidenori Nakagami
    • 2
  • Yoshiaki Taniyama
    • 2
  • Kei Yamamoto
    • 2
  • Hidetsugu Matsushita
    • 2
  • Keiko Matsumoto
    • 2
  • Jitsuo Higaki
    • 2
  • Yasufumi Kaneda
    • 1
  • Toshio Ogihara
    • 2
  1. 1.Division of Gene Therapy ScienceOsaka University Medical SchoolSuita, OsakaJapan
  2. 2.Department of Geriatric MedicineOsaka University Medical SchoolSuita, OsakaJapan

Personalised recommendations