Skip to main content

Symbiosis in Evolution: Origins of Cell Motility

Origins of Cell Motility

  • Chapter
Evolution of Life

Abstract

Summary. Using symbiosis in the DeBary sense of “living together of unlike organisms,” K.S. Mereschkowsky (1855–1921), on the basis of his original work, rejected Darwinian natural selection as source of evolutionary innovation [1]; he invented the term “symbiogenesis” referring to the appearance of new organisms emerging from prolonged symbiotic associations. A.S. Famintzyn (1835–1918) taught B.M. Kozo-Polyanski (1890–1957) who, in his 1924 text on new concepts in biology, attempted to unite Darwinian natural selection with symbiogenesis [2]. Kozo-Polyanski even claimed that cell motility was derived symbiotically from “flagellated cytodes” by which he meant “primitive flagellated bacteria.” The American I.E. Wallin (1883–1969) developed his theory of “symbionticism and the origin of species” [3] in the absence of direct communication with these Russian scientists, and he also elucidated the importance of symbiosis as the source of novelty in evolution.

Molecular biology and ultrastructural analysis has increased greatly the probability that these early biologists were correct in asserting the importance of symbiosis in evolution. The bacterial ancestry of plastids (from cyanobacteria) and mitochondria (from respiring bacteria) is now well established. Our independently- derived version of Kozo-Polyanski’s prophetic suggestion requires more rigorous proof; the status of the symbiotic origin of undulipodia is reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merschkowsky KS (1909) The theory of two plasms as the foundation of symbiogenesis: New knowledge concerning the origins of organisms (in Russian). Kazan

    Google Scholar 

  2. Kozo-Polyanski BM (1924) New principles of biology (in Russian). Puchina, Moscow

    Google Scholar 

  3. Wallin IE (1927) Symbionticism and the origin of species. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  4. Shmagina AP (1948) Ciliary movement (in Russian). State Publishing house for medical Literature, MEDGIZ, Moscow

    Google Scholar 

  5. Seravin LN (1967) Advanced systems of protozoa: Structure, mechanochemistry and physiology. USSR Academy of Sciences Scientific Council on Problems of Cytology. “Science” Publishing House, Leningrad

    Google Scholar 

  6. Hall JL, Ramanis Z, Luck DJL (1989) Basal body/centriolar DNA: Molecular genetic studies inChlamydomonas. Cell 59:121–132

    Article  PubMed  CAS  Google Scholar 

  7. Khakhina LN (1979) Concepts of symbiogenesis (in Russian). Akademie NAUK, ( Soviet Academy of Sciences ), Leningrad

    Google Scholar 

  8. Wilson EB (1928) The cell in development and heredity, 3rd edn. Macmillan, New York

    Google Scholar 

  9. Mehos D (1983) The symbionticism principle of Ivan E. Wallin. Master’s thesis, Boston University Graduate School

    Google Scholar 

  10. Pierantoni (1948) Trattato di biologia e zoologia generale. Humus, Naples

    Google Scholar 

  11. Buchner P (1965) Endosymbiosis of animals with plant–like microorganisms. Intersci– ence Publishers ( Wiley ), New York

    Google Scholar 

  12. Portier P (1918) Les symbiotes. Masson et Cie, Paris

    Google Scholar 

  13. Lumiere A (1919) Le myth des symbiotes. Masson et Cie, Paris

    Google Scholar 

  14. Gray MW (1983) Bacterial ancestry of mitochondria and plastids. Bioscience 33:693– 699

    Google Scholar 

  15. Margulis L (1981) Symbiosis in cell evolution. W.H. Freeman, San Francisco

    Google Scholar 

  16. Margulis L, Sagan D (1986) Microcosmos: Four billion years of evolution from our bacterial ancestors. Summit, New York

    Google Scholar 

  17. Margulis L, Corliss JO, Melkonian M, Chapman D (eds) 1990. Handbook of Protoctis– ta: The structure, cultivation, habitats, and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants, and fungi. Jones and Bartlett, Boston

    Google Scholar 

  18. Bermudes D, Chase D, Margulis L (1988) Morphology as the basis of taxonomy in large spirochetes symbiotic in termites. Int J Syst Bacteriol 38: 291–302

    Article  PubMed  CAS  Google Scholar 

  19. Hovind-Hougen K, Birch-Andersen A (1971) Electron microscopy of endoflagella and microtubules inTreponema Retier. Acta Pathol Microbiol Immunol Scand [B] 79: 37–50

    Google Scholar 

  20. Stewart KD, Mattox KR (1984) The case for polyphyletic origin of mitochondria: Morphological and molecular comparisons. J Molec Evol 21: 54–57

    Article  PubMed  CAS  Google Scholar 

  21. Margulis L (1988) Serial Endosymbiotic Theory (SET): Undulipodia, mitosis and their microtubule systems preceded mitochondria. Internalt J of Endocytobiosis and Cell Research 5: 133–162

    Google Scholar 

  22. Margulis L, Hinkle G, Stolz JF, Craft F, Esteve I, Guerrero R (1990) Mobilifilum chasei: Morphology and ecology of a spirochete from an intertidal stratified microbial mat community. Arch Microbiol 153: 422–427

    Article  PubMed  CAS  Google Scholar 

  23. Margulis L, Sagan (1985) Order amidst animalcules: The protoctista kingdom and its undulipodiated cells. Biosystems 18: 141–147

    Article  PubMed  Google Scholar 

  24. Margulis L, Sagan D (1990) Origins of sex, Yale University Press, New Haven (Preface to the paperback ed, 2nd printing January 1990 ).

    Google Scholar 

  25. Allen RD (1969) The morphogenesis of basal bodies and accessory structures of the ciliated protozoanTetrahymena pyriform.J Protozool 14: 553–565

    Google Scholar 

  26. Dyer BD Zoomastigina. Chap. 14. In [17] above

    Google Scholar 

  27. Raikov I (1982) The protozoan nucleus. Springer, Heidelberg New York

    Google Scholar 

  28. Wheatley DN (1982) The centriole: A central enigma of cell biology. Elsevier Biomedical Press, New York

    Google Scholar 

  29. Nicklas RB (1989) The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J Cell Biol 109: 2245–2255

    Article  PubMed  CAS  Google Scholar 

  30. Ris H, Kubai D (1974) An unusual mitotic mechanism in the protozoanSyndinium sp. J Cell Biol 60: 702–720

    Article  PubMed  CAS  Google Scholar 

  31. Szathmary E (1987) Early evolution of microtubules and undulipodia. Biosystems 20: 11–131

    Article  Google Scholar 

  32. Margulis L, Chase D, To L (1978) Microtubules in prokaryotes. Science 200:1118– 1123

    Article  Google Scholar 

  33. Bermudes D, Tzertzinis G, Obar R, Bosco G (unpublished manuscript)

    Google Scholar 

  34. Little M, Seehaus T (1988) Comp Biochem Physiol [Tubulin homology] 90B: 655–670

    Article  CAS  Google Scholar 

  35. Tzertzinis G (1987) Immunochemical characterization and partial amino acid sequence of tubulin-like protein fromSpirochaeta bajacaliforniensis. PhD disertation. Boston University Graduate School

    Google Scholar 

  36. Bermudes D, Fracek SP Jr, Laursen RA, Margulis L, Obar R, Tzertzinis G (1987) Tubulinlike protein fromSpirochaeta bajacaliforniensis. Ann NY Acad Sci 503: 515–527

    Article  CAS  Google Scholar 

  37. Beisson J, TM Sonneborn (1965) Cytoplasmic inheritance of the organization of the cell cortex inParamecium aurelia. Proc Nat Acad Sci USA 53: 275–282

    Article  PubMed  CAS  Google Scholar 

  38. Bermudes D, Margulis L, Tzertzinis G (1987) Prokaryotic origins of undulipodia: Application of the panda principle to the centriole enigma. Ann NY Acad Sci 503:187– 197

    PubMed  Google Scholar 

  39. Strother PK (1989) Pre-metazoan life. In Allen KC, Briggs DEG (eds): Evolution and the fossil record. Belhaven, London

    Google Scholar 

  40. Law R (1989) New phenotypes from symbiosis. TREE 4: 334–335

    Google Scholar 

  41. Margulis L, Fester R, (eds) (to be published) Evolution and speciation: Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge

    Google Scholar 

  42. Maynard-Smith J (1989) Generating novelty by symbiosis. Nature 341: 284–285

    Article  Google Scholar 

  43. Mereschkowsky KS (Merejkovsky C) (1920) La plante consideree comme un complexe symbiotique. Bull Soc Sci Nat 6: 17–98

    Google Scholar 

  44. Sagan L (Margulis L) (1967) On the origin of mitosing cells. J Theor Biol 14: 225–274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Margulis, L. (1991). Symbiosis in Evolution: Origins of Cell Motility. In: Osawa, S., Honjo, T. (eds) Evolution of Life. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68302-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68302-5_19

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68304-9

  • Online ISBN: 978-4-431-68302-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics