Skip to main content

Animation of the Development of Multicellular Structures

  • Conference paper

Abstract

This paper presents a simulation-based method for the animation of the development of cellular layers. The neighborhood relations between the cells are determined using a simulated developmental process, expressed by the formalism of map L-systems. The cell shapes result from mechanical cell interactions. Two types of forces are considered: the osmotic pressure and the tension of cell walls. The animation consists of periods of continuous growth separated by instantaneous cell divisions. The method is illustrated using the fern gametophyte Microsorium linguaeforme.

Keywords

  • mathematical modeling in biology
  • animation through simulation
  • visualization of development
  • map L-system
  • dynamic model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-68296-7_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-4-431-68296-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balinsky BI (1970) An introduction to embryology. W. B. Saunders Co., Philadelphia, 3rd edition. Bronshtein S (1985) Handbook of mathematics. Van Nostrand, New York.

    Google Scholar 

  • Culik II K, Wood D (1979) A mathematical investigation of propagating graph OL-systems. Information and Control, 43: 50–82.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • de Boer MJM (1989) Analysis and computer generation of division patterns in cell layers using developmental algorithms. PhD thesis, Theoretical Biology Group, University of Utrecht, the Netherlands.

    Google Scholar 

  • de Boer MJM, Lindenmayer A, Fracchia FD (1988) Analysis and simulations of spiral cleavage patterns. Abstract in European Journal of Cell Biology, 47:18. Supplement 24.

    Google Scholar 

  • de Boer MJM, Lindenmayer A (1987) Map OL-systems with edge label control: comparison of

    Google Scholar 

  • marker and cyclic systems. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors

    Google Scholar 

  • Graph-grammars and their application to computer science,pages 378–392. Springer-Verlag.Lecture Notes in Comp. Sci. 291.

    Google Scholar 

  • de Does M, Lindenmayer A (1983) Algorithms for the generation and drawing of maps representing cell clones. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-grammars and their application to computer science, pages 39–57. Springer-Verlag. Lecture Notes in Comp. Sci. 153.

    Google Scholar 

  • Fox L, Mayers DF (1987) Numerical solution of ordinary differential equations. Chapman and Hall, London.

    MATH  Google Scholar 

  • Gunning BES (1981) Microtubules and cytomorphogenesis in a developing organ: the root primordium of Azolla pinnata. In O. Kiermayer, editor, Cytomorphogenesis in plants, pages 301–325. Springer-Verlag, Wien. Cell Biology Monographs 8.

    Google Scholar 

  • Lindenmayer A (1984) Models for plant tissue development with cell division orientation regulated by preprophase bands of microtubules. Differentiation, 26: 1–10.

    CrossRef  Google Scholar 

  • Lindenmayer A, Rozenberg G (1979) Parallel generation of maps: developmental systems for cell layers. In V. Claus, H. Ehrig, and G. Rozenberg, editors, Graph-grammars and their application to computer science and biology, pages 301–316. Springer-Verlag. Lecture Notes in Comp. Sci. 73.

    Google Scholar 

  • Lück JL, Lindenmayer A, Lück (1988) Models of cell tetrads and clones in meristematic cell layers. Botanical Gazette, 149 (2): 127–141.

    Google Scholar 

  • Nakamura A, Lindenmayer A, Aizawa K (1986) Some systems for map generation. In G. Rozen- berg and A. Salomaa, editors, The Book of L, pages 323–332. Springer-Verlag, Berlin.

    Google Scholar 

  • Sears FW, Zemansky MW, Young HD (1985) College physics. Addison-Wesley Publ. Co., Reading, 6th edition.

    Google Scholar 

  • Siero PLJ, Rozenberg G, Lindenmayer A (1982) Cell division patterns: syntactical description and implementation. Computer Graphics and Image Processing, 18: 329–346.

    CrossRef  Google Scholar 

  • Tutte WT (1982) Graph theory. Addison-Wesley Publ. Co., Reading.

    Google Scholar 

  • van den Biggelaar JAM (1977) Development of dorsoventral polarity and mesentoblast determination in Patella vulgata. Journal of Morphology, 154: 157–186.

    CrossRef  Google Scholar 

  • Webster HC, Robertson DF (1967) Medical and biological physics. University of Queensland Press, Queensland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1990 Springer-Verlag Tokyo

About this paper

Cite this paper

Fracchia, F.D., Prusinkiewicz, P., de Boer, M.J.M. (1990). Animation of the Development of Multicellular Structures. In: Magnenat-Thalmann, N., Thalmann, D. (eds) Computer Animation ’90. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68296-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68296-7_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68298-1

  • Online ISBN: 978-4-431-68296-7

  • eBook Packages: Springer Book Archive