Skip to main content

Biomechanics of Lumbar Spine Instability

  • Chapter
  • 161 Accesses

Abstract

Low back pain is the most common and costly disorder of the musculoskeletal system. The magnitude of the problem is well documented by the frequency of its occurrence. In western society, 50%–70% of the population will have low back pain once in their lifetime, and 18% of the population has low back pain at any one time. The cost of this disease for the United States has been estimated at $15–50 billion per year. Although the cause of most low back pain is not known, spinal instability is considered as one of the most important causes [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nachemson A (1985) Lumbar spine instability: A critical update and symposium summary. Spine 10: 290–291

    Article  PubMed  CAS  Google Scholar 

  2. Knutsson F (1944) The instability associated with disk degeneration in the lumbar spine. Acta Radiologica [Diagn] 25: 593–609

    Article  Google Scholar 

  3. Dvorak J, Panjabi MM, Novotny JE, Chang DG, Grob D (1991) Clinical validation of functional flexion/extension roentgenograms of the lumbar spine. Spine 16 (8): 943–950

    Article  PubMed  CAS  Google Scholar 

  4. Pearcy M, Portek I, Shepherd J (1985) The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis. Spine 10 (2): 150–153

    Article  PubMed  CAS  Google Scholar 

  5. Nicoll EA (1949) Fractures of the dorsolumbar spine. J Bone Joint Surg [Br] 31: 376–394

    Google Scholar 

  6. Holdsworth FW (1962) Fractures, dislocations, and fracture/dislocations of the spine. J Bone Joint Surg [Br] 45: 6–20

    Google Scholar 

  7. Louis R (1985) Spinal stability as defined by the three-column spine concept. Anat Clin 7: 33

    Article  PubMed  CAS  Google Scholar 

  8. Denis F (1983) The three-column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8: 817–831

    Article  PubMed  CAS  Google Scholar 

  9. Panjabi MM, Goel VK, Takata K (1982) Physiological strains in lumbar spinal ligaments. An in vitro biomechanical study. Spine 7 (3): 192–203

    Article  PubMed  CAS  Google Scholar 

  10. Oxland TR, Panjabi MM (in press) The onset and progression of spinal injury: A porcine flexion-compression trauma model. J Biomechanics

    Google Scholar 

  11. Panjabi MM, Duranceau JS, Oxland TR, Bowen CE (1989) Multidirectional instabilities of traumatic cervical spine injuries in a porcine model. Spine 14 (10): 1111–1115

    Article  PubMed  CAS  Google Scholar 

  12. Virgin W (1951) Experimental investigations into physical properties of the intervertebral disk. J Bone Joint Surg [Br] 33: 607

    Google Scholar 

  13. Farfan HF, Sullivan JD (1967) The relation of facet orientation to intervertebral disk failure. Can J Surg 10: 179

    PubMed  CAS  Google Scholar 

  14. Markolf KL, Morris JM (1974) The structural components of the intervertebral disk. J Bone Joint Surg [Am] 56: 675

    CAS  Google Scholar 

  15. Goel VK, Nishiyama K, Weinstein JN, Liu YK (1986) Mechanical properties of lumbar spinal motion segments as affected by partial disk removal. Spine 11 (10): 1008

    Article  PubMed  CAS  Google Scholar 

  16. Panjabi MM, Krag MH, Chung TQ (1984) Effects of disk injury on mechanical behavior of the human spine. Spine 9 (7): 707–713

    Article  PubMed  CAS  Google Scholar 

  17. Mixter WJ, Barr JS (1934) Ruptures of the intervertebral disk with involvement of the spinal canal. N Engl J Med 211: 210

    Article  Google Scholar 

  18. Adams M, Hutton W (1982) 1981 Volvo Award in Basic Science. Prolapsed intervertebral disk: a hyperflexion injury. Spine 7 (3): 184–191

    Google Scholar 

  19. Abumi K, Panjabi MM, Duranceau J, Oxland T, Crisco JJ (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine 15 (11): 1142–1147

    Article  PubMed  CAS  Google Scholar 

  20. Nachemson A (1960) Lumbar interdiskal pressure. Acta Orthop Scand Suppl 43

    Google Scholar 

  21. Prasad P, King AI, Ewing CL (1974) The role of articular facets during +Gz acceleration. J Appi Mech 41: 321

    Article  Google Scholar 

  22. White AA, Panjabi MM (1978) Clinical biomechanics of the spine, 1st edn. Lippincott, Philadelphia

    Google Scholar 

  23. Posner I, White A, Edwards T, Hayes W (1982) A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7 (4): 374–389

    Article  PubMed  CAS  Google Scholar 

  24. Crisco JJ, Panjabi MM, Yamamoto I, Oxland TR (in press) Euler stability of the human ligamentous lumbar spine: Part II Experiment. Clin Biomechanics

    Google Scholar 

  25. Panjabi MM, Abumi K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscle forces: A biomechanical model. Spine 14 (2): 194–200

    Article  PubMed  CAS  Google Scholar 

  26. Panjabi MM, Pelker R, Crisco J, Thibodeau L, Yamamoto I (1988) Biomechanics of healing of posterior cervical spinal injuries in a canine model. Spine 13 (7): 803–807

    Article  PubMed  CAS  Google Scholar 

  27. Wetzel FT, Panjabi MM, Pelker RR (1989) Temporal biomechanics of posterior cervical spine injuries in vivo in a rabbit model. J Orthop Res 7: 728–731

    Article  PubMed  CAS  Google Scholar 

  28. Panjabi MM, White AA, Johnson RM (1975) Cervical spine mechanics as a function of transection of components. J Biomechanics 8: 327–336

    Article  CAS  Google Scholar 

  29. Wetzel FT, Panjabi MM, Pelker RR (1989) Biomechanics of the rabbit cervical spine as a function of component transection. J Orthop Res 7: 723–727

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Panjabi, M.M. (1993). Biomechanics of Lumbar Spine Instability. In: Yonenobu, K., Ono, K., Takemitsu, Y. (eds) Lumbar Fusion and Stabilization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68234-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68234-9_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68236-3

  • Online ISBN: 978-4-431-68234-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics