Skip to main content
  • 331 Accesses

Abstract

Numerical modeling based on chemical kinetics is a powerful technique for the analysis of many combustion phenomena including turbulent diffusion combustion, as is reviewed from time to time [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller JA, Kee RJ, and Westbrook CK (1990) Chemical kinetics and combustion modeling. Ann. Rev. Phys. Chem. 41: 345–387

    Article  ADS  Google Scholar 

  2. Westbrook CK, Warnatz J, and Pitz WJ (1989) A detailed chemical kinetic reaction mechanism for the oxidation of iso-octanz and n-heptane over an extended temperature range and its application to analysis of engine knock. 22’nd Symp.(Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 893–901

    Google Scholar 

  3. Wilk RD, Green RM, Pitz WJ, Westbrook CK, Addagarla S, Miller DL, and Cernansky NP (1990) An experimental and kinetic modeling study of the combustion of n-butane and iso-butane in an internal combustion enegine. SAE technical paper series 900028

    Book  Google Scholar 

  4. Kennel C, Goettgens J, and Peters N (1990) The basic structure of lean propane flames. 23’rd Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 479–485

    Google Scholar 

  5. Tsang W and Hampson RF (1986) Chemical kinetic data base for combustion chemistry. Part 1. Methane and related compounds. J. Phys. Chem. Ref. Data 15:1087–1279;

    Article  ADS  Google Scholar 

  6. Tsang W (1987) Part 2. Methanol J. Phys. Chem. Ref. Data 16:471–508;

    Article  ADS  Google Scholar 

  7. Tsang W (1988) Part 3. Propane, J. Phys. Chem. Ref. Data 17:887–952;

    Article  ADS  Google Scholar 

  8. Tsang W (1990) Part 4. Isobutane J. Phys. Chem. Ref. Data 19:1–68

    Article  ADS  Google Scholar 

  9. Westbrook CK, Pitz WJ, Thornton MM, and Malte PC (1988) A kinetic modeling study of n-pentane oxidation in a well-stirred reactor. Combust. Flame 72:45–62

    Article  Google Scholar 

  10. Westbrook CK, Creighton JC, Lund CM, and Dryer FL (1977) A numerical model of chemical kinetics of combustion in a turbulent flow reactor. J. Phys. Chem. 81:2542–2554

    Article  Google Scholar 

  11. Wilk RD, Pitz WJ, Westbrook CK, and Cernansky NP (1990) Chemical kinetic modeling of ethene oxidation at low and intermediate temperatures. 23’rd Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 203–210

    Google Scholar 

  12. Miller JA and Melius CF (1988) A theoretical analysis of the reaction between hydroxyl and acetylene. 22’nd Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 1031–1039

    Google Scholar 

  13. Wagner AF, Slagle IR, Sarzynski D, and Gutman D (1990) Experimental and theoretical studies of the C2H5 + O2 reaction kinetics. J. Phys. Chem. 94:1853–1868

    Article  Google Scholar 

  14. Aoyagi M and Kato S (1988) A theoretical study of the potential energy surface for the reaction OH + CO ⇀ CO2 + H. J. Chem. Phys. 88:6409–6418.

    Article  ADS  Google Scholar 

  15. Cohen N and Westberg KR (1986) The use of transition-state theory to extrapolate rate coefficients for reactions of O atoms with alkanes. Int. J. Chem. Kinet. 18:99–140

    Article  Google Scholar 

  16. Cohen N (1991) The use of transition-state theory to extrapolate rate coefficients for reactions of H atoms with alkanes. Int. J. Chem. Kinet. 23:683–700

    Article  Google Scholar 

  17. Troe J (1989) Toward a quantitative understanding of elementary combustion reactions. 22’nd Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 843–862

    Google Scholar 

  18. Westbrook CK and Dryer FL (1984) Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Combust. Sci. 10:1–57

    Article  Google Scholar 

  19. Westbrook CK and Dryer FL (1981) Chemical kinetics and modeling of combustion processes. 18’th Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 749–767

    Google Scholar 

  20. Westbrook CK and Pitz WJ (1984) A comprehensive chemical kinetic reaction mechanism for oxidation and pyrolysis of propane and propene, Combust. Sci. Technol. 37:117–152

    Article  Google Scholar 

  21. Pitz WJ, Westbrook CK, Proscia WM, and Dryer FL (1985) A comprehensive chemical kinetic reaction mechanism for the oxidation of n-butane. 20’th Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 831–843

    Google Scholar 

  22. Coats CM and Williams A (1979) Investigation of the ignition and combustion of n-heptane-oxygen mixtures. 17’th Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 611–621

    Google Scholar 

  23. Westbrook CK and Pitz WJ (1987) Kinetic modeling of autoignition of higher hydrocarbons: n-heptane, n-octane, and iso-octane. In: Warnatz J and Jager W (ed) Complex chemical reaction systems, mathematical modeling and simulation. Springer-Verlag, Heidelberg

    Google Scholar 

  24. Axelsson EI, Brezinsky K, Dryer FL, Pitz WJ, and Westbrook CK (1987) Chemical kinetic modeling of the oxidation of large alkane fuels: n-octane and iso-octane. 21’st Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 783–793

    Google Scholar 

  25. Kern RD and Xie K (1991) Shock tube studies of gas phase reactions preceeding the soot formation process. Prog. Energy Combust. Sci. 17:191–210

    Article  Google Scholar 

  26. Keller JO and Westbrook CK (1986) Response of a pulse combustor to changes in fuel composition. 21’st Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 547–555

    Google Scholar 

  27. Barr PK, Keller JO, Bramlette TT, Westbrook CK, and Dec JE (1990) Pulse combustor modeling: Demonstration of the importance of characteristic times. Combust. Flame 82:252–269

    Article  Google Scholar 

  28. Sloane TM (1984) A computational study of ignition by oxygen dissociation. Combust. Sci. and Technol. 34:317–330

    Article  Google Scholar 

  29. Westbrook CK (1982) Chemical kinetics of hydrocarbon oxidation in gaseous detonations. Combust. Flame 46:191–210

    Article  Google Scholar 

  30. Westbrook CK and Urtiew PA (1983) Chemical kinetic prediction of critical paramaters in gaseous detonations. 19’th Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 615–623

    Google Scholar 

  31. Pitz WJ and Westbrook CK (1986) Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock. Combust. Flame 63:113–133

    Article  Google Scholar 

  32. Westbrook CK, Pitz WJ, and Leppard WR (1991) The autoignition chemistry of paraffinic fuels and pro-knock and anti-knock. Society of Automotive Engineers publication SAE-912314

    Book  Google Scholar 

  33. Cernansky NP, Green RM, Pitz WJ, and Westbrook CK (1986) Chemistry of fuel oxidation preceeding end-gas autoignition. Combust. Sci. Technol. 50:3–25

    Article  Google Scholar 

  34. Griffiths JF, Coppersthwaite D, Phillips CH, Westbrook CK, and Pitz WJ (1990) Autoignition temperatures of binary mixtures of alkanes in a closed vessel:omparisons between experimental measurements and numerical predictions. 23’rd Symp. (Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 1745–1752

    Google Scholar 

  35. Miller JA and Bowman CT (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15:287–338

    Article  Google Scholar 

  36. Jachimowski CJ and McLain AG (1983) A chemical kinetic mechanism for the ignition of silane/hydrogen mixtures. NASA Technical Paper 2129

    Google Scholar 

  37. Britten JA, Tong J, and Westbrook CK (1990) A numerical study of silane combustion. 23’rd Symp. (Intl.) on Combust., The Combustion Insitute, Pittsburgh, pp 195–202

    Google Scholar 

  38. Koda S (1992) Kinetic aspects of oxidation and combustion of silane and related compounds. Prog. Energy Combust. Sci. (in press)

    Google Scholar 

  39. Miller JA, Smooke MD, Green RM, and Kee RJ (1983) Kinetic modeling of the oxidation of ammonia in flames. Combust. Sci. and Technol. 34:149–176

    Article  Google Scholar 

  40. Tieszen SR, Stamps DW, Westbrook CK, and Pitz WJ (1991) Gaseous hydrocarbon-air detonations. Combust. Flame 84:376–390

    Article  Google Scholar 

  41. Chang W-D and Senkan SM (1989) Detailed chemical kinetic modeling of fuel-rich C2HCl3/O2//Ar flames. Environ. Sci. Technol. 23:442–450

    Article  Google Scholar 

  42. Davidson DF and Hanson RK (1990) High temperature rate coefficients derived from N-atom ARAS measurements and excimer laser photolysis of NO. Int. J. Chem. Kinet. 22:843–861

    Article  Google Scholar 

  43. Koshi M, Yoshimura M, Fukuda K, and Matsui H (1990) Reactions of N(4S) atoms with NO and H2. J. Chem. Phys. 93:8703–8708

    Article  ADS  Google Scholar 

  44. Yoshimura M, Koshi M, and Matsui H. (1992) Non-Arrhenius temperature ependence of the rate constant for the reaction of H + H2S. Chem. Phys. Lett. 189:199–204

    Article  ADS  Google Scholar 

  45. Michael JV and Wagner AF (1990) Rate constants for the reactions O + C2H2 and O + C2H2 products, over the temperature range — 850–1950 K, by the flash photolysis-shock tube technique. J. Phys. Chem. 94:2353–2464

    Google Scholar 

  46. Fisher JR and Michael JV (1990) Rate constants for the reaction D + D2O ⇀ D2 + OD by the flash photolysis-shock tube technique over the temperature range 1285–2261 K. J. Phys. Chem. 94:2465–2471

    Article  Google Scholar 

  47. Koshi M, Nishida N, and Matsui H. (1992) Kinetics of the reactions of C2H with C2H2, H2 and D2. J. Phys. Chem. 97: (in press)

    Google Scholar 

  48. Mahmud K and Fontijn A (1987) A high temperature photochemistry kinetics study of the reaction of O(3P) atoms with acetylene from 290 to 1510 K. J. Phys. Chem. 91:1918–1921

    Article  Google Scholar 

  49. Shin KS and Michael JV (1991) Rate constants (298–1799 K) for the reactions C2H + C2H2 ⇀ C4H2 + H and C2D + C2D2 ⇀ C4D2 + D. J. Phys. Chem. 95:5864–5869

    Article  Google Scholar 

  50. Lange W and Wagner GJ (1975) Massenspektrometrische Untersuchungen uber Erzugung und Reaktionen von C2H-Radikalen. Ber. Bunsenges. Phys. Chem. 79:165–170

    Google Scholar 

  51. Stephens JW, Hall JL, Solka H, Yan WB, Curl RF, and Glass GP (1987) Rate constant measurements of reactions of C2H with H2, O2, C2H2 and NO using color center laser kinetic spectroscopy. J. Phys. Chem. 91:5740–5743

    Article  Google Scholar 

  52. Laufer AH and Bass AM (1979) Photochemistry of acetylene. Bimolecular rate constant for the formation of butadyne and reactions of ethynyl radicals. J. Phys. Chem. 83:310–313

    Article  Google Scholar 

  53. Walker RW (1985) Temperature coefficients for reactions of OH radicals with alkanes between 300 and 1000 K. Int. J. Chem. Kinet. 17:573–582

    Article  Google Scholar 

  54. Atkinson R, Carter WPL, Aschmann SM, Winer AM, and Pitts JN Jr (1984) Kinetics of the reaction of OH radicals with alkanes between 300 and 1000 K. Int. J. Chem. Kinet. 16:469–481

    Article  Google Scholar 

  55. Droege AT and Tully FP (1986) Hydrogen-atom abstraction reaction from alkanes by OH. 3 Propane. J. Phys. Chem. 90:1949–1954

    Article  Google Scholar 

  56. Tully FP, Goldsmith JEM, and Droege AT (1986) Hydrogen-atom abstraction reaction from alkanes by OH. 4 Isobutane. J. Phys. Chem. 90:5932–5937

    Article  Google Scholar 

  57. Ruiz RP and Bays KD (1984) Rates of reaction of propyl radicals with molecular oxygen. J. Phys. Chem. 88:2592–2595

    Article  Google Scholar 

  58. Slagle IR, Balocchi F, and Gutman D (1978) Study of the reactions of oxygen atoms with hydrogen sulfide. J. Phys. Chem. 82:1333–1336

    Article  Google Scholar 

  59. Miyoshi A, Matsui H, and Washida N (1990) Rates of reaction of hydroxyalkyl radicals with molecular oxygen. J. Phys. Chem. 94:3016–3019

    Article  Google Scholar 

  60. Ohmori K (1992) PhD. dissertation, Faculty of Engineering, The University of Tokyo

    Google Scholar 

  61. Asaba T and Fujii N (1971) Shock-tube study of high-temperature pyrolysis of benzene. 13’th Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 155–164

    Google Scholar 

  62. Braun-Unkhoff M, Frank P, and Just Th (1988) A shock tube study on the thermal decomposition of toluene and of the phenyl radical at high temperatures. 22’nd Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 1053–1061

    Google Scholar 

  63. Frenklach M, Clary DW, Gardiner WC Jr, and Stein SE (1984) Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. 20’th Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 887–901

    Google Scholar 

  64. Fujii N and Asaba T (1973) Shock-tube study of the reaction of rich mixtures of benzene and oxygen. 14’th Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 433–442

    Google Scholar 

  65. Fujii N and Asaba T (1974) Ignition of lean benzene mixtures with oxygen in shock waves. Acta Astronautica 1:417–426

    Article  Google Scholar 

  66. Venkat C, Brezinsky K, and Glassman I (1982) High temperature oxidation of aromatic hydrocarbons. 19’th Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 143–152

    Google Scholar 

  67. Emdee JL, Brezinsky K, and Glassman I (1990) Oxidation of o-xylene. 23’rd Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 77–84

    Google Scholar 

  68. Hippler H, Reihs C, and Troe J (1990) Shock tube UV absorption study of the oxidation of benzyl radicals. 23’rd Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 37–43

    Google Scholar 

  69. Hsu DSY, Lin CY, and Lin MC (1984) CO formation in early stage high temperature benzene oxidation under fuel lean condition: kinetics of the initiation reaction, C6H6 ⇀ C6H5 + H. 20’th Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp 623–630

    Google Scholar 

  70. Thyagarajan K and Bhaskaran KA (1990) High temperature gas phase oxidation kinetics of benzene. Current Topics in Shock Waves, Amer. Inst. Phys., pp 462–467

    Google Scholar 

  71. Kiefer JH, Mizerka LJ, Patel MR, and Wei HC (1985) A shock tube investigation of major pathways in the high-temperature pyrolysis of benzene. J. Phys. Chem. 89:2013–2019

    Article  Google Scholar 

  72. Fujii N, Sakatsume N, and Miyama H (1988) High temperature reaction of the C6H6–N2O system in shock waves. Proc. Nat. Symp. on Shock Wave Phenomena, Shock Wave Research Center, Tohoku University, pp 77–86

    Google Scholar 

  73. Warnatz J (1984) Rate coefficients in the C/H/O system. In: Gardiner WC Jr (ed) Combustion chemistry, Springer-Verlag, New York, pp 197–360

    Google Scholar 

  74. Fujii N (1991) A shock tube study of the oxidation of benzene; effects of H2 addition. Intl. Seminar on High Temp. Chem. Univ. Tokyo, pp 1–2

    Google Scholar 

  75. Westbrook CK and Miller JA (1983) (ed) Combust. Sci. Techn., Special issue on modeling of laminar flame propagation in premixed gases, vol.34

    Google Scholar 

  76. Atkinson R, Bull DC, and Shuff PJ (1980) Initiation of spherical detonation in hydrogen/air. Combust. Flame 39:287–300

    Article  Google Scholar 

  77. Benson SW (1981) The kinetics and thermochemistry of chemical oxidation with application to combustion and flames. Prog. Energy Combust. Sci. 7:125–134

    Article  Google Scholar 

  78. Pollard RT (1977) Hydrocarbons. In: Bamford CH and Tipper CFH (ed) Comprehensive chemical kinetics vol. 17, Gas-phase combustion. Elsevier, New York, Chapter 2

    Google Scholar 

  79. Westbrook CK and Pitz WJ (1990) Modeling of knock in spark-ignition engines. Intl. Symp. COMODIA 90:11–20

    Google Scholar 

  80. Westbrook CK, Pitz WJ, and Leppard WM (1991) The autoignition chemistry of paraffinic fuels and pro-knock and anti-knock additives: A detailed chemical kinetic study. Society of Automotive Engineers Report SAE-912314

    Book  Google Scholar 

  81. Lyon RK (1975) Method for the reduction of the concentration of NO in combustion effluents using ammonia. U. S. Patent 3,0900,544

    Google Scholar 

  82. Perry RA and Siebers DL (1986) NO reduction using sublimation of cyanuric acid. Nature 324:657–658

    Article  ADS  Google Scholar 

  83. Dixon-Lewis G (1979) Mechanism of inhibition of hydrogen-air flames by hydrogen bromide and its relevance to general problem of flame inhibition. Combust. Flame 36:1–14

    Article  Google Scholar 

  84. Westbrook CK (1980) Inhibition of laminar methane-air and methanol-air flames by hydrogen bromide. Combust. Sci. Techn. 23:191–202

    Article  Google Scholar 

  85. Westbrook CK (1982) Inhibition of hydrocarbon oxidation in laminar flames and detonations by halogenated compounds. 19’th Symp. (Intl.) on Combust., The Combustion Insitute, Pittsburgh, pp 127–141

    Google Scholar 

  86. Westbrook CK and Dryer FL (1980) Prediction of laminar flame properties of methanol-air mixtures. Combust. Flame 37: 171–192

    Article  Google Scholar 

  87. Westbrook CK, Adamczyk AA, and Lavoie GA (1981) A numerical study of laminar flame wall quenching. Combust. Flame 40:81–99

    Article  Google Scholar 

  88. Butler TD, Cloutman LD, Dukowicz JK, and Ramshaw JD (1981) Multidimensional numerical simulation of reactive flow internal combustion engines. Prog. Energy Combust. Sci. 7:293–315

    Article  Google Scholar 

  89. Spalding B (1956) Theory of flame phenomena with a chain reaction. Philos. Trans. Roy. Soc. London 249A:l–25

    Google Scholar 

  90. Smooke MD (1982) Solution of burner-stabilized premixed laminar flames by boundary value methods. J. Comp. Phys. 48:72–105

    Article  MATH  ADS  Google Scholar 

  91. Smooke MD, Miller JA, and Kee RJ (1982) Numerical solution of burner stabilized pre-mixed laminar flames by an efficient boundary value method, Numerical methods in laminar flame propagation. Friedr. Vieweg & Sohn, Wiesbaden

    Google Scholar 

  92. Smooke MD, Miller JA, and Kee RJ (1983) Determination of adiabatic flame speeds by boundary value methods. Combust. Sci. Techn. 34:79–89

    Article  Google Scholar 

  93. Peters, N. (1985) Numerical simulation of combustion phenomena. Springer, New York, pp 90–109

    Book  Google Scholar 

  94. Peters N and Williams FA (1987) The asymptotic structure of stoichiometric methane-air flames. Combust. Flame 68:185–207

    Article  Google Scholar 

  95. Sano Tand Kotake S (1987) A rational algorithm for chemical kinetics; calculation of combustion flow, Numerical methods in thermal problems 5:896–906

    Google Scholar 

  96. Sano T (1991) Flame ignition of premixed methane air mixtures by a high-temperature body. 4th Int. Conf. on Numerical Combustion, pp 186–187

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Koda, S. (1993). Kinetics. In: Someya, T. (eds) Advanced Combustion Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68228-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68228-8_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68230-1

  • Online ISBN: 978-4-431-68228-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics