Skip to main content

Materials for Bone Repair, Augmentation, and Implant Coatings

  • Chapter
Biomechanics in Orthopedics

Summary

This paper briefly describes some commercial and experimental materials used in maxillofacial, orthopedic and dental applications for bone augmentation, substitution and repair. These materials include:

  1. 1.

    Autogeneous, freeze-dried or banked bones and bovine bone-derived materials

  2. 2.

    Demineralized bone matrix (DBM)

  3. 3.

    Coral (CaCO3)

  4. 4.

    Polymers

  5. 5.

    Inert ceramics (alumina, zirconia)

  6. 6.

    Bioactive glass ceramics

  7. 7.

    Calcium phosphate materials such as hydroxyapatite (HA), tricalcium phosphate (TCP), coralline HA, and non-sintered apatite

  8. 9.

    Composites

  9. 10.

    Coated and uncoated metal implants

The strength of the material/bone interface, the acceleration of bone formation and the extent of bone attachment depend on the composition and properties of the materials. Autogeneous and allogenic grafts and DBM are osteogenic or osteoinductive, inducing bone formation; other materials are osteoconductive, providing a scaffold for new bone growth. Bioactive materials such as calcium phosphate materials and glass ceramics become chemically bonded to the bone, thus providing a very strong material/bone interface. Bioinert materials such as ceramic oxides, metals and alloys, and polymers do not become directly attached to the bone, and consequently, the material/bone interface is much weaker.

HA coating on metal implants were shown to provide accelerated bone attachment and greater skeletal fixation and, in some cases, appeared to have minimized leakage of some metal ions. However, failure between the coating and the metal substrate sometimes occurs causing the loosening and failure of the implant.

Characterization of some HA-coated implants demonstrated that the composition of the coating was different from that of pure HA ceramic depending on the method of coating. Analyses of some HA coatings showed the presence of a mixture of different calcium phosphate phases was actually present: HA, α- and β-TCP, and amorphous calcium phosphates (ACP). The concentration of these phases varied from the inner to the outer layers of the coating. Variations in the composition of HA coatings from different manufacturers were also observed. The effect of the coating composition on the in vivo performance and long-term stability of the coated implant need further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glowacki J, Murray JE, Kaban L, Folkman J, Mulliken JB (1981) Application of the Biological Principle of Induced Osteogenesis for Craniofacial Defects. Lancet 1: 959–963

    Article  PubMed  CAS  Google Scholar 

  2. Reddi AH (1985) Implant-stimulated Interface Reactions During Collagenous Bone Matrix-induced Bone Formation. J Biomed Mater Res 19: 233–239

    Article  PubMed  CAS  Google Scholar 

  3. Urist MR, Strates BS (1971) Bone Morphogenetic Protein. J Dent Res 50: 45–49

    Google Scholar 

  4. Vandersteehoven JJ, Spector M (1983) Histological Investigation of bone Induction by Demineralized Allogeneic Bone Matrix: A Natural Biomaterial for Osseous Reconstruction. J Biomed Mater Res 17: 1003–1014

    Google Scholar 

  5. Amler MH (1988) Osteogenic Potential of Non-vital Tissues and Synthetic Implant Materials. J Periodontol 58: 758–761

    Google Scholar 

  6. Enneking WF, Morris JL (1972) Human Autologous Bone Transplants. Clin Orthop 87: 28–39

    PubMed  CAS  Google Scholar 

  7. Bajpai PK (1983) Biodegradable Scaffolds in Orthopedic, Oral and Maxillofacial Surgery. In: Rubin LR (ed) Biomaterials in reconstructive surgery. CV Mosby, St. Louis, pp 312–328

    Google Scholar 

  8. De Groot K (1983) Ceramic of Calcium, Phosphates: Preparation and Properties. In: de Groot K (ed) Bioceramics of Calcium Phosphate, CRC Press, Boca Raton, Florida, pp 100–114

    Google Scholar 

  9. Hench LL, Wilson J (1984) Surface-active Materials. Biomater Science 226: 630636

    Google Scholar 

  10. Jarcho M (1981) Calcium Phosphate Ceramics as Hart Tissue Prosthetics. Clin Orthop 157: 259–278

    PubMed  CAS  Google Scholar 

  11. Metsger DS, Driskell TD, Paulsrud JR (1982) Tricalcium Phosphate Ceramic — A Resorbable Bone Implant: Review and Current Status. J Am Dent Assoc 105: 1035–1038

    Google Scholar 

  12. Van Blitterswijk CA (1985) Calcium Phosphate Middle-Ear Implants. PhD thesis, Rijksuniversitiet te Leiden

    Google Scholar 

  13. Wilson J, Merwin GE (1988) Biomaterials for Facial Bone Augmentation: Comparative Studies. J Biomed Mater Res: Appl Biomat 22: 159–177

    Google Scholar 

  14. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding Mechanisms at Interface of Ceramic Prosthetic Materials. J Biomed Mater Res 2: 117–141

    Article  Google Scholar 

  15. Cook SD, Kay JF, Thomas KA, Jarcho M (1987) Interface Mechanics and Histology of Titanium and Hydroxylapatite Coated Metal Implants. J Biomed Mater Res 23: 183–199

    Google Scholar 

  16. Daculsi G, LeGeros RZ, Deudon C (1990) Scanning and Transmission Electron Microscopy, and Electron Probe Analysis of the Interface Between Implants and Host Bone. Scan Electron Microsc 4: 309–314

    CAS  Google Scholar 

  17. De Groot K (1987) Hydroxyapatite Coatings for Implants in Surgery. In Vincenzini P (ed) High Tech Ceramics, Elsevier Science Publishers BV, Amsterdam, pp 381–386

    Google Scholar 

  18. Denissen H (1979) Dental Root Implants of Apatite Ceramics: Experimental Investigations and Clinical Use of Dental Root Implants Made of Apatite Ceramics. PhD thesis, Vrije Universiteit to Amsterdam

    Google Scholar 

  19. Denissen HW, Kalk W, de Nieuport HM, Maltha JC, van de Hooff A (1990) Mandibular Bone Response to Plasma-sprayed Coatings of Hydroxyapatite. Int J Prosthodont 3: 53–58.

    CAS  Google Scholar 

  20. Gross U, Schmitz H-J, Strunz V (1988) Surface Activities of Bioactive Glass, Aluminum Oxide, and Titanium in a Living Environment. In: Ducheyne P, Lemons JE (eds) Bioceramics: Materials Chjaracteristics Versus In Vivo Behavior. Ann NY Acad Sci 523: 211–226

    Google Scholar 

  21. Guilemin G, Patat JL, Fournie J, Chetail M (1987) The Use of Coral as a Bone Graft Substitute. J Biomed Mater Res 21: 557–567

    Article  Google Scholar 

  22. Hayashi K, Matsuguchi N, Uenoyama K, Kanemaru T, Sugioka Y (1989) Evaluation of Metal Implants Coated with Several Types of Ceramics as Biomaterials. J Biomed Mater Res 23: 1247–1259

    Article  PubMed  CAS  Google Scholar 

  23. Okumura M, Ohgushi H, Yoshikawa T, Tamai S (1990) Heterotropic Ossification in Sintered Bone Ceramics and Kiel Bone by Using Bone Marrow Cells. In: Heimke G (ed) Bioceramics, vol 2. German Ceramic Society, Cologne, pp 86–93

    Google Scholar 

  24. Ono K, Yamamuro T, Nakamura T, Kakutani Y, Kitsugi T, Hyakuna K, Kokubo T, Oka M, Kotoura Y (1988) Apatite-wollastonite Containing Glass Ceramic-Fibrin Mixture as a Bone Defect Filler. J Biomed Mater Res 22: 869–885

    Article  PubMed  CAS  Google Scholar 

  25. Oonishi H, Tsuji E, Ishimaru H, Yamamoto M, Delecrin J (1990) Clinical Significance of Chemical Bonds Between Bioactive Ceramics and Bone in Orthopaedic Surgery. In: Heimke G (ed) Bioceramics, vol 2. German Ceramic Society, Cologne, pp 286–293

    Google Scholar 

  26. Osborn JF, Newesely H (1980) The Material Science of Calcium Phosphate Ceramic. Biomaterials 1: 108–111

    Article  PubMed  CAS  Google Scholar 

  27. Piecuch JF (1986) Augmentation of the Atrophic Edentulous Ridge with Porous Replaniform Hydroxyapatite (Interpore-200). Dent Clin North Am 30: 291–305

    PubMed  CAS  Google Scholar 

  28. Heughebaert M, LeGeros RZ, Gineste M, Guilhem, Bonel G (1988) Physicochemical Characterization of Deposits Associated with HA Ceramics Implanted in Non-osseous sites. J Biomed Mater Res: Appl Biomat 22: 257–268

    Google Scholar 

  29. Cowin SC (1981) Mechanical Properties of Bone. American Society of Mechanical Engineering, New York

    Google Scholar 

  30. LeGeros RZ (1981) Apatites in Biological Systems. Prog Crystal Growth Charact 4: 1–45

    Article  CAS  Google Scholar 

  31. LeGeros RZ (1991) Calcium Phosphates in Oral Biology and Medicine. In: Myers H (ed) Monographs in Oral Sciences Series, vol 15. S. Karger, Basel

    Google Scholar 

  32. Boskey AL, Posner AS (1984) Structure and Formation of Bone Mineral. In: Hastings GW, Ducheyne P (eds) Natural and Living Biomaterials. CRC Press, Boca Raton, Florida, pp 27–41

    Google Scholar 

  33. LeGeros RZ (1983) Properties of Commercial Bone Grafts Compared to Human Bone and New Synthetic Bone Biomaterials. Ninth Annual meeting of the Society for Biomaterials, Birmingham, Alabama, April Abstr. No. 86

    Google Scholar 

  34. LeGeros RZ (1988) Calcium Phosphate Materials in Restorative Dentistry: A Review. Adv Dent Res 2: 164–183

    PubMed  CAS  Google Scholar 

  35. Doyle C (1990) Bioactive Composites in Orthopedics. In: Yamamuro T, Hench L, Wilson-Hench J (eds) Handbook of Bioactive Ceramics Vol II, CRC Press, Florida, pp 195–207

    Google Scholar 

  36. LeGeros RZ, Penugonda B (1984) Potential Use of Calcium Phosphate as Fillers in Composite Restorative Biomaterials. Second World Congress on Biomaterials, Washington, DC, April

    Google Scholar 

  37. LeGeros RZ, Orly I, Gregoire M, Abergas T, Kazimiroff J, Tarpley T (1987) Physicochemical Properties of Calcium Phosphate Biomaterials Used as Bone Substitutes. The 13th Ann Meeting Soc of Biomaterials, Abstr. No. 84

    Google Scholar 

  38. Alexander H, Parsons JR, Ricci JL, Bajpai PK, Weiss AB (1987) Calcium Phosphate Ceramic Based Composite as Bone Graft Substitutes. In: William C (ed) Critical Reviews in Biocompatibility, CRC Press, Boca Raton, FL, pp 43–77

    Google Scholar 

  39. West TL, Burstein DD (1985) Freeze-dried Bone and Coralline Implants Compared in the Dog. J Periodontol 56: 348–351

    PubMed  CAS  Google Scholar 

  40. LeGeros RZ, Daculsi G (1990) In Vivo Transformation of Biphasic Calcium Phosphate Ceramics: Ultrastructural and Physicochemical Characterization. In: Yamamuro T, Hench L, Wilson-Hench J (eds) CRC Handbook of Bioactive Ceramics Vol 2, CRC Press, Boca Raton, Florida, pp 17–28

    Google Scholar 

  41. LeGeros RZ, Daculsi G, Orly I, LeGeros JP (1990) Bone Augmentation Implant Coating Materials. In: Proc. First International Conference on Implant Dentistry, Tokyo, February

    Google Scholar 

  42. Ueno Y, Shima Y, Akiyama T (1987) Development of a New Biomaterial as a Bone Substitute: True Bone Ceramics. In: Vincenzini P (ed) High Tech Ceramics, Elsevier Science Publishers BV, Amsterdam, pp 369–378

    Google Scholar 

  43. Ricci J, Alexander H, Parsons JR, Salsbury RL, Bajpai PK (1986) Partially Resorbable Hydroxyapatite-based Cement for Repair of Bone Defects. In: Saha S (ed) Biomedical Engineering V: Recent Developments. Pergamon, New York, pp 469–474

    Google Scholar 

  44. Roy DM, Linnehan SA (1974) Hydroxyapatite Formed from Coral Skeleton Carbonate by Hydrothermic Exchange. Nature 247: 220–227

    Article  PubMed  CAS  Google Scholar 

  45. Holmes RE (1979) Bone Regeneration within a Coralline Hydroxyapatite Implant. Plast Reconstr Surg 63: 626–636

    Article  PubMed  CAS  Google Scholar 

  46. Ravaglioli A, Krajewski A, Ponti P, Valmori R (1986) Bioglaze Adhesion to Metals. J Physiol 47: 769–774

    Google Scholar 

  47. Albee FH (1920) Studies in Bone Growth. Triple Calcium Phosphate as a Stimulus to Osteogenesis. Ann Surg 71: 32–36

    Article  PubMed  CAS  Google Scholar 

  48. LeGeros RZ (1986) Variability of b-TCP/HAP Ratios in Sintered Apatites. J Dent Res 65:292, Abstr. No. 110

    Google Scholar 

  49. Brown WE, Chow LC (1985) Dental Restorative Cement Pastes. US patent No. 4, 518, 430, May 21

    Google Scholar 

  50. LeGeros RZ, Chohayeb A, Schulman A (1982) Apatitic Calcium Phosphates: Possible Restorative materials. J Dent Res 61:343, Abstr. No. 1482

    Google Scholar 

  51. Wagner JR (1989) A Clinical and Histological Case Study Using Resorbable Hydroxyapatite for the Repair of Osseous Defects Prior to Endosseous Implant Surgery. J Oral Implantol 15: 186–192

    PubMed  CAS  Google Scholar 

  52. Bonel G, Heughebaert J-C, Heughebaert M, Lacout JL, Lebugle A (1988) Apatitic Calcium Orthophosphates and Related coumpounds for Biomaterials Preparation. In: Ducheyne P, Lemons JE (eds) Bioceramics: Materials Characteristics Versus In Vivo Behavior. Ann NY Acad Sci 523: 115–130

    Google Scholar 

  53. LeGeros RZ, Parsons R, Daculsi G, Driessens F, Lee D, Metsger S (1988) Biodegradation/Bioresorption of Calcium Phosphate Ceramics: Task Group Report. In: Ducheyne P, Lemons J (eds) Bioceramics: Material Characterization vs. In Vivo Behavior. Ann NY Acad Sci 253: 268–271

    Google Scholar 

  54. Korth MW, Meffert RM, Cassingham RJ (in press) A histological Comparison of Alloplastic Grafts Placed in Infrabony Defects Around Hydroxylapatite-coated Implants. Int J Perio

    Google Scholar 

  55. Osborn JR, Donath K (1984) Die Enosale Implantation von Hydroxylapatitkeramik and Tricalciumphosphatkeramik• Integration vs. Substitution. Dtsch Zahnarztl Z 39: 970–976

    Google Scholar 

  56. Aoki H, Kato K, Ogiso M, Tabata T (1977) Studies on the Application of Apatite to Dental Materials. J Dent Eng 18: 86–89

    CAS  Google Scholar 

  57. Niwa S, Sawai K, Takahashi S, Tagai H, Ono M, Fukuda Y (1980) Experimental Studies on the Implantation of Hydroxylapatite in the Medullary Canal of Rabbits. Biomaterials 1: 65–71

    Google Scholar 

  58. Ellinger RF, Nery EB, Lynch KL (1986) Histological Assessment of Periodontal Osseous Defects Following Implantation of Hydroxyapatite and Biphasic Calcium Phosphate Ceramics: A Case Report. Int J Perio Restor Dent 3: 223–233

    Google Scholar 

  59. Daculsi G, Passuti N, Martin S, Deudon C, LeGeros R, Raher S (1990) Macroporous Calcium Phosphate Ceramic for Long Bone Surgery in Humans and Dogs: Clinical and Histological Study. J Biomed Mater Res 24: 379–396

    Google Scholar 

  60. Davies JE (1990) The Use of Cell and Tissue Culture to Investigate Bone Cell Reactions to Bioactive materials. In: Yamamuro I, Hench T, Wilson J (eds) Handbook of Bioactive Ceramics, vol I. CRC Press, Florida, pp 195–225

    Google Scholar 

  61. Gregoire M, Only I, Menanteau J (1990) The Influence of Calcium Phosphate Biomaterials on Human Bone Cell Activities: An In vitro Approach. J Biomed Mater Res 24: 163–177

    Google Scholar 

  62. Ducheyne P (1987) Bioceramics: Material Characteristics versus In Vivo Behavior. J Biomed Mater Res 21: 219–236

    PubMed  CAS  Google Scholar 

  63. Boutin P, Christel P, Dorlot J-M, Meunier A, Roquancourt A, Blanquaert D, Herman S, Sedel 1, Witvoet J (1988) The Use of Dense Alumina-Alumina Ceramic Combination in Total Hip Replacement. J Biomed Mater Res: Appl Biomat 22: 1203–1232

    Google Scholar 

  64. Nagai N, Takeshita N (1982) Mechanical and Biological Properties of Partially-stabilized Zirconia Ceramic Implants (in Japanese). J Dent Med 25: 581–596

    Google Scholar 

  65. Bonfield W (1988) Hydroxyapatite-Reinforced Polyethylene as an Analogous Material for Bone Replacement. In: Ducheyne P, Lemons JE (eds) Bioceramics: Materials Characteristics Versus In Vivo Behavior. Ann NY Acad Sci 523: 173–177

    Google Scholar 

  66. Amler MH, LeGeros RZ (1990) Hard Tissue Replacement ( HTR) Polymer as an Implant Material. J Biomed Mater Res 24: 1079–1089

    Google Scholar 

  67. Ashman A, Bruins P (1985) Prevention of Alveolar Bone Loss Postextraction with Grafting Materials. Oral Surg Oral Med Oral Pathol 60: 146–153

    Article  PubMed  CAS  Google Scholar 

  68. Kelley BS, Casper RA, Dunn RL (1986) Totally Resorbable High Strength Bone Plate for Internal Fracture Fixation. Biomedical Engineering IV, Recent Developments, pp 26–31

    Google Scholar 

  69. Cutright DE, Hunsuck EE, Beasley JD (1971) Fracture Reduction Using a Biodegradable Material, Polylactic Acid. J Oral Surg 29: 393–397

    Google Scholar 

  70. Cohen J (1983) Metal Implants: Historical Background and Biological Response to Implantation. In: Rubin LR (ed) Biomaterial in Reconstructive Surgery, CV Mosby, pp 46–61

    Google Scholar 

  71. Branemark PI, Zarb GA, Albrektsson T (1985) Tissue-integrated Prostheses, Osseo-integration in Clinical Dentistry. Quintessence, Chicago

    Google Scholar 

  72. Memon VA, Urban RM, Alroy J, Galantes JO (1986) Malignant Neoplasms Associated with Orthopedic Implant Materials in Rats. J Orthop Res 4: 346–355

    Article  Google Scholar 

  73. LeGeros RZ, Taheri MH, Quirolgico GM, LeGeros JP (1980) Formation and Stability of Apatites: Effects of Some Cationic Substituents. In: Proc 2nd Int Cong on Phosphorus Compounds, Boston, April, 21–25, pp 89–103

    Google Scholar 

  74. Blumenthal NC, Cosma V (1989) Inhibition of Apatite Formation by Titanium and Vanadium Ions. J Biomed Mater Res 23: 13–22

    Article  PubMed  CAS  Google Scholar 

  75. Eachenroeder HC Jr, McLaughlin RE, Reger SI (1987) Enhanced Stabilization of Porous-coated Implants with Tricalcium Phosphate Granules. Clin Orthop 180: 234–247

    Google Scholar 

  76. LeGeros RZ, Niwa S (1989) Unpublished Studies on Apatite/Resorbable Polymer Composite

    Google Scholar 

  77. LeGeros RZ, Orly I (1989) Unpublished Studies on Reactive Apatite Coatings

    Google Scholar 

  78. Carrerot H, Rieu J, Bousquet G, Rambert A (1989) Alumina Plasma Spray coatings on Stainless Steel and Titanium Alloys for Prosthesis Anchorage. In: Heimke G (ed) Bioceramcs, vol 2, (Proc 2nd International Symposium on Ceramics in Medicine, Heidelberg, 1989

    Google Scholar 

  79. Ducheyne P, Healy KE (1988) The Effect of Plasma-sprayed Calcium Phosphate Ceramic Coatings on the Metal Ion Release from Porous Titanium and Cobalt-chromium Alloys. J Biomed Mater Res 22: 1137–1163

    Article  PubMed  CAS  Google Scholar 

  80. Reck R (1984) Bioactive Glass Ceramics in Ear Surgery: Animal Studies and Clinical Results. Laryngoscope 94: 1–54

    Article  PubMed  CAS  Google Scholar 

  81. Benque EP, Gineste M, Dufforts JF, Louise F, Borchetti A, Heughebaert M (1986) A Propos des Bioapatites dans la Chirurgie de Comblement. J Periodontol 5: 89101

    Google Scholar 

  82. Cranin AN, Tobin GP, Gelbman J (1987) Applications of Hydroxyapatite in Oral and Maxillofacial Surgery, Part II: Ridge Augmentation and Repair of Major Oral Defects. Compend Contin Educ Dent 8: 334–345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Tokyo

About this chapter

Cite this chapter

LeGeros, R.Z. (1992). Materials for Bone Repair, Augmentation, and Implant Coatings. In: Niwa, S., Perren, S.M., Hattori, T. (eds) Biomechanics in Orthopedics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68216-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68216-5_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68218-9

  • Online ISBN: 978-4-431-68216-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics