Advertisement

Knee Joint Force in Normal and Pathological Gait

  • Ian J. Harrington

Summary

Knee joint loading in normal adults is characterized by three distinct joint force peaks corresponding to force actions generated in the hamstring, quadriceps and gastrocnemius muscles. These peaks tend to be absent during load transmission in pathological knees. The resultant knee joint force is transmitted primarily through the medial joint compartment in normal knees but in pathological joints, particularly those with varus-valgus angulation, its force (the centre of joint pressure) is frequently unpredictable and there are no distinct peaks. The magnitude of the knee joint bearing force tends to increase with increasing angular deformity but does not exceed normal joint loading values. Joint force transmission in prosthetic knees does not follow a normal loading pattern but is more typical of pre-operative loading profiles.

Key words

Joint force Force actions Centre of pressure Moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weber W, Weber E (1836) Mechanik der menschlichen Gehwerkzenge. Göttingen, GermanyGoogle Scholar
  2. 2.
    Marey EJ, Demeny G (1887) Etudes experimentales de la locomotion humaine C R Acad Sci [III] 105: 544–552Google Scholar
  3. 3.
    Braune W, Fischer 0 (1872) Uber den Schwerpunkt des menschlichen Körpers mit Rücksicht auf die Ausrüstung des deutchen infanteristen. Abhandlungen der Koenigl. Sächs. Gesellschaft der Wissenschaft vol. 15Google Scholar
  4. 4.
    Bernstein NA (1935) Biodynamics of locomotion (in Russian). VIEM, MoscowGoogle Scholar
  5. 5.
    Elftman H (1939) The function of the muscles in locomotion. Am J Physiol 125: 357Google Scholar
  6. 6.
    Pauwels F (1935) Der Schenkelhalsbruch ein mechanisches problem. Ferdinand Enke, StuttgartGoogle Scholar
  7. 7.
    Bresler B, Frankel JP (1950) The forces and moments in the leg during level walking. Trans ASME 72: 27–36Google Scholar
  8. 8.
    Cunningham DM, Brown GW (1952) The devices for measuring the forces acting on the human body during walking. Proc Soc Exp Stress Anal IX 2: 75Google Scholar
  9. 9.
    Rydell N (1965) Forces in the hip joint (II); intra-vital studies. In: Kennedi RM (ed) Biomechanics and related bio-engineering topics. Permagon Press, OxfordGoogle Scholar
  10. 10.
    Paul JP (1965) Bio-engineering studies of the forces transmitted by joints (II): Engineering Analysis. In: Kennedi RM (ed) Biomechanics and related bioengineering topics. Permagon Press, OxfordGoogle Scholar
  11. 11.
    Morrison JB (1967) The forces transmitted by the human knee joint during activities. PhD thesis, University of StrathclydeGoogle Scholar
  12. 12.
    Harrington IJ (1973) Knee joint force in normal and pathological gait. MSc thesis, University of StrathclydeGoogle Scholar
  13. 13.
    Nissan M (1979) Review of some basic assumptions in knee bio-mechanics. J Biomech 13: 375–381CrossRefGoogle Scholar
  14. 14.
    Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee replacement design on walking and stair climbing. J Bone Joint Surg [Am] 64: 13281335Google Scholar
  15. 15.
    Drillis RJ (1958) Objective recordings and biomechanics of pathological gait. Ann NY Acad Sci 74: 86–109PubMedCrossRefGoogle Scholar
  16. 16.
    Kettelkamp DB, Chao EY (1972) A method for quantitative analysis of medial and lateral compression forces at the knee during standing. Clin Orthop 83: 202–213PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson F, Leitl S, Waugh W (1980) The distribution of load across the knee — a comparison of static and dynamic measurements. J Bone Joint Surg [Br] 62: 346349Google Scholar
  18. 18.
    Magnet PGJ (1976) Bio-mechanics of the knee. Springer, BerlinGoogle Scholar
  19. 19.
    Murray MP, Gore DR, Clarkson BH (1971) Walking patterns of patients with uni lateral hip pain due to osteoarthritis and avascular necrosis. J Bone Joint Surg [Am] 53 (2): 259–273Google Scholar
  20. 20.
    Gainey JC, Kadaba MP, Wootten ME, Ramakrishnan MS, Siris ES, Lindsay R, Canfield R, Cochrane GVB (1989) Gait analysis of patients who have Paget’s disease. J Bone Joint Surg [Am] 71 (4): 568–479Google Scholar
  21. 21.
    Stauffer RN, Chao EYS, Gyory AN (1977) Biomechanical gait analysis of the diseased knee joint. Clin Orthop 126: 246–255PubMedGoogle Scholar
  22. 22.
    Simon SR, Trieschmann HW, Burdett RG, Ewald FC, Sledge CB (1983) Quantitative gait analysis after total knee arthroplasty for monarticular degenerative arthritis. J Bone Joint Surg [Am] 65 (5): 605–613Google Scholar
  23. 23.
    Andriacchi TP, Ogle JA, Galante JO (1977) Walking speed as a basis for normal and abnormal gait measurements. J Biomech 10: 261–268PubMedCrossRefGoogle Scholar
  24. 24.
    Prodromos CC, Andriacchi TP, Galante JO (1985) A relationship between gait and clinical changes following high tibial osteotomy. J Bone Joint Surg [Am] 67 (8): 1188–1194Google Scholar
  25. 25.
    Wang JW, Kuo KN, Andriacchi TP, Galante GO (1990) The influence of walking mechanics and time on the results of proximal tibia osteotomy. J Bone Joint Surg [Am] 72: 905–909Google Scholar

Copyright information

© Springer-Verlag Tokyo 1992

Authors and Affiliations

  • Ian J. Harrington
    • 1
  1. 1.Toronto East General and Orthopaedic HospitalTorontoCanada

Personalised recommendations