Skip to main content

The Conjugate Classification of the Kernel Form of the Hexagonal Grid

  • Conference paper

Abstract

The conjugate classification, a new classification of the kernel form which defines the spatial structure of binary data on the hexagonal grid, is presented in the paper. The seven points of the kernel form on the hexagonal grid have a state set of 128 states and the conjugate classification arranges the state set in a five level hierarchy. The state set is divided into 2 conjugate sets, 14 groups, 22 clusters, 28 classes and 128 states in the five levels respectively. Using information theory, the conjugate classification is proved to be an optimal structure, in the sense that it has the minimum number of variables and the shortest whole bit length for each variable on each level. When using the new representation, it is necessary to process both conjugate sets in same pass as both sets have equivalent importance. The new classification is potentially useful for cellular automata and mathematical morphology operations in different practical application areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E. S. Deutsch (1970). “On Parallel Operations on Hexagonal Arrays” IEEE Trans. Comput. C-19, pp982–983.

    Article  Google Scholar 

  • E. S. Deutsch (1972). “Thinning Algorithms on Rectangular, Hexagonal and Triangular Arrays” CACM Vol. 15 No. 9, pp827–837.

    Google Scholar 

  • E. Dubois (1985). “The Sampling and Reconstruction of Time-Varying Imagery with Application in Video System” Proceedings of the IEEE Vol. 73, No. 4, pp502–522.

    Article  Google Scholar 

  • M. Gardner (1971). “On Cellular Automata, Self-reproduction, the Garden of Eden and the Game ‘life’,” Scientific American 224(2), pp112–117.

    Article  Google Scholar 

  • M. J. E. Golay (1969). “Hexagonal Parallel Pattern Transformations” IEEE Trans. Comput. Vol. 18, pp733–740.

    Article  Google Scholar 

  • S. B. Gray (1971). “Local Properties of Binary Images in Two Dimensions.” IEEE Trans. Comput. C-20, 551–561.

    Article  Google Scholar 

  • R. W. Hamming (1980). “Coding and Information Theory” Prentice-Hall.

    MATH  Google Scholar 

  • B. K. P. Horn (1986). “Robot Vision” Chapter 4: ‘Binary Images: Topological Properties’ The MIT Press.

    Google Scholar 

  • M. Ingram and K. Preston, Jr. (1970). “Automatic Analysis of Blood Cells” Scientific American Vol. 223, No. 11, pp72–82.

    Article  Google Scholar 

  • T. Y. Kong and A. Rosenfeld (1989). “Digital topology: introduction and survey” Computer Vision, Graphics and Image Processing 48, 357–393.

    Article  Google Scholar 

  • T. L. Kunii and Y. Takai (1989). “Cellular Self-Reproducing Automata As a Parallel Processing Model for Botanical Colony Growth Pattern Simulation” New Advances in Computer Graphics: Proceedings of CG International’89, R. A. Earnshaw and B. Wyvill (Eds.), pp7–22, Springer-Verlag Tokyo.

    Google Scholar 

  • E. Luczak and A. Rosenfeld (1976). “Distance on a Hexagonal Grid” IEEE Trans. Comput. C-25, pp532–533.

    Article  Google Scholar 

  • A. L. Loeb (1971). “Color and Symmetry” John Wiley k Sons, Inc.

    Google Scholar 

  • R. M. Mersereau (1979). “The Processing of Hexagonally Sampled Two-Dimensional Signals” Proceedings of IEEE Vol. 67, No. 6, pp930–949.

    Article  Google Scholar 

  • K. Preston, Jr. (1971). “Feature Extraction By Golay Hexagonal Pattern Transform” IEEE Trans. Comput. C-20, pp1007–1014.

    Article  MathSciNet  Google Scholar 

  • K. Preston, Jr. and M. J. B. Duff (1984). “Modern Cellular Automata: Theory and Application” Plenum Press, New York.

    Google Scholar 

  • J. Serra (1982). “Image Analysis and Mathematical Morphology” Academic Press London.

    MATH  Google Scholar 

  • H. Steinhaus (1960). “Mathematical Snapshots” New York Oxford University Press.

    Google Scholar 

  • R. L. Stevenson and G. R. Arce (1985). “Binary Display of Hexagonally Sampled Binary Images” Journal of the Optical Society of America A, Vol. 2 No.6, ppl009–1013.

    Article  Google Scholar 

  • D. K. W. Walters (1986). “A Computer Vision Model Based on Psychophysical Experiments” Pattern Recognition By Humans and Machines Vol. 2, Visual Perception, E. C. Schwab and H. C. Nusbaum(eds), Academic Press, pp87–120.

    Google Scholar 

  • A. F. Wells (1977). “Three-dimensional Nets and Polyhedra” John Wiley and Sons, New York.

    Google Scholar 

  • H. Weyl (1952). “Symmetry” Princeton University Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Tokyo

About this paper

Cite this paper

Zheng, Z., Maeder, A.J. (1992). The Conjugate Classification of the Kernel Form of the Hexagonal Grid. In: Kunii, T.L., Shinagawa, Y. (eds) Modern Geometric Computing for Visualization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68207-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68207-3_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68209-7

  • Online ISBN: 978-4-431-68207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics