Skip to main content

An Adaptive Incremental Sampling Approximation to Volume Rendering

  • Conference paper
Visual Computing

Part of the book series: CG International Series ((CGIS))

  • 142 Accesses

Abstract

Ray casting and object projection are important means of rendering volume data. These methods create more realistic image, but involve higher computational cost, than surface rendering. The conventional ray casting algorithm uses a trilinear interpolation process to determine the densities of the sample points along a ray. In this paper, we propose a more efficient incremental approach to approximate the trilinear interpolation. A ray casting algorithm that uses this incremental approach is theoretically at least two times faster than that using conventional trilinear interpolation in producing similar quality images. Further speedup can be achieved with little decrease in image quality by sampling a different number of points for each cell along the ray. The speedup and high image quality are supported by the result of an experiment we performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blinn J. F., “Light reflection functions for simulation of clouds and dusty surfaces”. Computer Graphics, Vol. 16, No.3, Jul 1982. pp 21–30. ACM Siggraph ’82 Conference Proceedings.

    Article  Google Scholar 

  2. Drebin R. A., Carpenter L., Hanrahan P., “Volume rendering”. Computer Graphics, Vol. 22, No.4. Aug 1988. pp 69–78.

    Article  Google Scholar 

  3. Frider G., Gordon D., Reynolds R. A., “ Back-to-Front display of voxel based objects”. IEEE CG&A. Jan 1985. pp 52–60

    Google Scholar 

  4. Goodsell D. S., Olson A. J., “Molecular applications of volume rendering and 3 D texture maps”. CH Volume Visualization Workshop 1989.

    Google Scholar 

  5. Hohne K. H., Bomans M., Pommert A., et. al., “3 D visualization of tomographic volume data using the generalized voxel model”. The Visual Computer. Vol. 6.1990. pp 2–7.

    Article  Google Scholar 

  6. Kajiya J. T., and Von Herzen B. P., “Ray tracing volume densities”. Computer Graphics, Vol. 18, No.4, Ju1984. pp 165–174. ACM Siggraph ’84 Conference Proceedings.

    Article  Google Scholar 

  7. Lenz R., Gudnumdsson B., Lindskog B., and Danielsson P., “Display of density volume”, IEEE CG & A, Vol. 6, No.7, Jul 1986.

    Google Scholar 

  8. Levoy M., “Volume rendering by adaptive refinement”. The Visual Computer. Vol. 6, 90. pp 2–7

    Google Scholar 

  9. Max N., Hanrahan P., Crawfis R., “Area and volume coherence for efficient visualization of 3 D scalar functions”. Computer Graphics, Vol. 24. No.5, Nov 1990.

    Google Scholar 

  10. Phong B. T., “Illumination for computer generated images”. Comm. ACM. Vol. 18, No.6, Jun 1975. pp 311–317

    Article  Google Scholar 

  11. Sabella P., “A rendering algorithm for visualizing 3D scalar fields”. Computer Graphics, Vol. 22, No.4, Aug 1988. pp 51–58.

    Article  Google Scholar 

  12. Shirley P., Neeman H., “Volume visualization at the Center of Supercomputing Research and Development”. Proceedings of the Chapel Hill Workshop on volume visualization. May 1989. pp 17–20

    Google Scholar 

  13. Shirley P., Tuchman A., “A polygonal approximation to direct scalar volume rendering”. Computer Graphics. Vol. 24. No.5. Nov 1990. pp 63–69

    Article  Google Scholar 

  14. Tuy H. K., Tuy L. T., “Direct 2 D display of 3 D objects”. IEEE CG & A. Oct 1984. pp 29–33.

    Google Scholar 

  15. Westover L.,“Footprint evaluation for volume rendering”, Computer Graphics, Vol. 24, No.4, Aug 1990. pp 367–376. ACM Siggraph ’90 Conference Proceedings.

    Article  Google Scholar 

  16. Upson C., Keeler M., “V-buffer: visible volume rendering”. Computer Graphics, Vol. 22, No.4, Aug 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Tokyo

About this paper

Cite this paper

Shu, R., Chui, CK. (1992). An Adaptive Incremental Sampling Approximation to Volume Rendering. In: Kunii, T.L. (eds) Visual Computing. CG International Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68204-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68204-2_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68206-6

  • Online ISBN: 978-4-431-68204-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics