Skip to main content

Quantum Deformations of SLn/B and its Schubert Varieties

  • Conference paper
ICM-90 Satellite Conference Proceedings

Abstract

In this paper, we prove the results announced in [L-R] for G = SLn. Let G be a simple algebraic group over the base field k. Let M be a maximal torus in G and B, a Borel subgroup, B ⊃ M. Let W be the Weyl group of G. For w ∈ W, let X(w) = \(\overline {BwB} \) (mod B) be the Schubert variety in G/B associated to w. Let L be an ample line bundle on G/B. We shall denote the restriction of L to X(w) also by just L. Let k[X(w)] = ⊙ H0(X(w),L). In this paper, we construct an algebra kq [X(w)] over k(q), where q is a parameter taking values in k*, as a quantization of k[X(w)], G being SLn. The algebra k q [SL n ]: Let G = SLn. Let T = (tij), 1 ≤ i, j ≤ n. Let Let

$$R = \sum\limits_{\mathop {i \ne j}\limits_{i,j = 1} }^n {{e_{ii}}} { \otimes _{jj}} + q\sum\limits_{i \ne i}^n {{e_{ii}}} \otimes {e_{ii}} + \left( {q - {q^{ - 1}}} \right)\sum\limits_{1j < in} {{e_{ij}}} \otimes {e_{ji}}$$

(here, eij’s are the elementary matrices). Let A(R) be the associative algebra (with 1) generated by {tij, 1 ≤ i, j ≤ n}, the relations being given by RT1T2 = T2T1R, where T1 = T ⊗ Id, T2 = Id ⊗ T (cf. [F-R-T]). Then A(R) gives a quantization of k[Mn], Mn being the space of n × n matrices and k[Mn], the coordinate ring of Mn. Now A(R) has a bialgebra structure, then comultiplication being given by Δ: A(R) → A(R) ⊗ A(R), \(\Delta = \left( {{t_{ij}}} \right) = \sum\limits_{k = 1}^n {{t_{ik}}} \otimes {t_{kj}}\) In the sequel, we shall denote A(R) by kq [Mn]. Let

$$D = \sum\limits_{\sigma \in {s_n}}^n {{t_{ik}}} {\left( { - q} \right)^{ - l{{\left( \sigma \right)}_t}}}1\sigma {\left( 1 \right)^t}2\sigma {\left( 2 \right)^{...}}n\sigma \left( n \right)$$

. we shall refer to D as the q-determinant (or the quantum determinant) of (tij).

On leave of absence from USSR; LOMI, Fontanka 27, Leningrad, 191011

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Drinfeld, Quantum Groups, Proc. of the ICM, Berkeley, 1986.

    Google Scholar 

  2. E.E. Demidov, Yu. I. Manin, E.E. Mukhin, and D. V. Zhdanowich, Nonstandard Quantum Deformations of GL(n) and Constant Solutions of the Yang-Baxter Equation (preprint).

    Google Scholar 

  3. L. Faddeev, N. Reshetikhin, and L. Takhtajan, Quantization of Lie Groups and Lie Algebras, preprint, LOMI -14–87, 1987; Algebra and Analysis, vol.1, no: 1 (1989).

    Google Scholar 

  4. M. Höchster, Grassmannians and their Schubert varieties are arithmetically Cohen-Macaulay, J. Alg., Vol. 25 (1973), 40–57.

    Article  Google Scholar 

  5. W.V.D. Hodge, Some enumerative results in the theory of forms, Proc. Camb. Phil. Soc., 39 (1943), 22–30.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10, (1985), 63–69.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Kirillov and N. Reshetikhin, q-Weyl group and multiplicative formula for R-matrices, preprint of Harvard University, January 1990.

    Google Scholar 

  8. V. Lakshmibai and N. Reshetikhin, Quantum deformations of Flag and Schubert schemes, to appear in Comptes Rendus, Paris.

    Google Scholar 

  9. V. Lakshmibai and C.S. Seshadri, Geometry of G/P-V, J. Alg. 100 (1986), 462–557.

    MathSciNet  MATH  Google Scholar 

  10. G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., 70, 237–249 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc. 36 (1972), 143–171.

    MathSciNet  MATH  Google Scholar 

  12. N. Reshetikhin, Quantized universal enveloping algebras, Yang-Baxter equation and invariants of links, LOMI-preprint, E-4–87, E-17–87.

    Google Scholar 

  13. M. Rosso, Finite Dimensional Representations of Quantum Analog of the Enveloping Algebra of a Complex Simple Lie Algebra, Comm. Math. Phys. 117 (1988), 581–593.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ya. Soibelman, Algebra of functions on compact quantum group and its applications, Alg. and Anal., Vol. 2, No: 1 190–212 (1990).

    MATH  Google Scholar 

  15. E. Taft, J. Towber, “Quantum deformation of flag schemes and Grassmann schemes,” 1989-preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Lakshmibai, V., Reshetikhin, N. (1991). Quantum Deformations of SLn/B and its Schubert Varieties. In: Kashiwara, M., Miwa, T. (eds) ICM-90 Satellite Conference Proceedings. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68170-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68170-0_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70085-2

  • Online ISBN: 978-4-431-68170-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics