Advertisement

Hydrocephalus pp 362-368 | Cite as

Hydrocephalus Revision of its Classification

  • Koreaki Mori
Conference paper

Summary

Progress in neuroimaging techniques has led to accumulation of an extensive body of information on hydrocephalus. Whereas most of the current classifications of this disorder are oversimplified, others are either not sufficiently specific or do not adequately reflect the variability of its characteristics, and as such, are of little help for pragmatic purposes and for patient prognostication. In this communication, a contemporary classification of hydrocephalus is presented, bearing in mind its role in the clinical management of cases, and its place in further research of the disorder.

Keywords

Hydrocephalus Classification Cerebrospinal fluid pathways Pathophysiology Revision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bering EA Jr, Sato O (1976) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20: 1050–1063Google Scholar
  2. Brightman MW (1965) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. 1. Ependymal distribution. J Cell Biol 26: 99–123Google Scholar
  3. Brightman MW (1968) The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. Prog Brain Res 29: 19–37PubMedCrossRefGoogle Scholar
  4. Cao M, Lisheng H, Shouzheng S (1984) Resolution of brain edema in severe brain injury at controlled high and low intracranial pressures. J Neurosurg61: 707–712PubMedCrossRefGoogle Scholar
  5. Di Rocco C, Pettorossi VE, Caldarelli R, Mancinelli R, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: Experimental study. Exp Neurol 59: 40–52PubMedCrossRefGoogle Scholar
  6. Drayer BP, Rosenbaum AE (1978) Studies of the third circulation: Ampipaque CT cisternography and ventriculography. J Neurosurg 48: 946–956PubMedCrossRefGoogle Scholar
  7. Ellington E, Margolis G (1969) Block of arachnoid villi by subarachnoid hemorrhage. J Neurosurg 30: 651–657PubMedCrossRefGoogle Scholar
  8. Gilles FH, Davidson RI (1971) Communicating hydrocephalus with deficient dysplastic parasagittal arachnoidal granulations. J Neurosurg 35: 421–426PubMedCrossRefGoogle Scholar
  9. Gutierrez Y, Friede RL, Kakiney WJ (1975) Agenesis of arachnoid granulations and its relationship to communicating hydrocephalus. J Neurosurg 43: 553–558PubMedCrossRefGoogle Scholar
  10. Hakim S, Hakim C (1984) A biomechanical model of hydrocephalus and its relationship to treatment. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 143–160Google Scholar
  11. Hassler O (1964) Angioarchitecture in hydrocephalus. An autopsy and experimental study with the aid of microangiography. Acta Neuropathol (Berlin) 4: 65–74Google Scholar
  12. Hemmer R, Böhm B (1976) Once a shunt, always a shunt? Dev Med Child Neurol 18 (Suppl 37): 69–73Google Scholar
  13. Holtzer GJ, deLange SA (1973) Shunt-independent arrest of hydrocephalus. J Neurosurg 39: 698–701PubMedCrossRefGoogle Scholar
  14. Hopkins LN, Bakay L, Kinkel WR, Grand W (1977) Demonstration of transventricular CSF absorption by computerized tomography. Acta Neurochir (Wien) 39: 151–157CrossRefGoogle Scholar
  15. Johnston IH, Howman-Giles R, Whittle JR (1984) The arrest of treated hydrocephalus in children. A radionucleotide study. J Neurosurg 61: 752–756CrossRefGoogle Scholar
  16. Kinal ME (1962) Hydrocephalus and the dural venous sinuses. J Neurosurg 19: 195–201PubMedCrossRefGoogle Scholar
  17. Laurence KM, Coats S (1962) The natural history of hydrocephalus: Detailed analysis of 182 unoperated cases. Arch Dis Child 37: 345–362PubMedCrossRefGoogle Scholar
  18. Matsumoto S (1976) Pathogenesis of hydrocephalus. Neurol Med Chir (Tokyo) 16: 287–295Google Scholar
  19. Milhorat TH (1972) Hydrocephalus and the cerebrospinal fluid. Williams and Wilkins, BaltimoreGoogle Scholar
  20. Mori K (1990) Hydrocephalus — revision of its definition and classification with special reference to “intractable infantile hydrocephalus”. Nerv Syst Child 6: 198–204CrossRefGoogle Scholar
  21. Mori K, Raimondi AJ (1975) Submicroscopic changes in the periventricular white matter of hydrocephalic ch mouse. Arch Jpn Chir 44: 159–168Google Scholar
  22. Mori K, Murata T, Nakano Y, Handa H (1977) Periventricular lucency in hydrocephalus on computerized tomography. Surg Neurol 8: 337–340PubMedGoogle Scholar
  23. Morse DE, Low FN (1972) The fine structure of the pia mater of the rat. Am J Anat 133: 349–368PubMedCrossRefGoogle Scholar
  24. Oka N, Nakada J, Endo S, Takaku A, Shinohara H, Morisawa S (1985) Angioarchitecture in experimental hydrocephalus. Neurol Med Chir (Tokyo) 25: 701–706CrossRefGoogle Scholar
  25. Osaka K, Mori K, Handa H (1979) New classification of hydrocephalus based on recent concepts of cerebrospinal fluid circulation. Brain Nerv 7: 475–485Google Scholar
  26. Raimondi AJ (1986) Hydrocephalus: Definition and classification. Presented at the 14th Annual Meeting of the Japanese Society for Pediatrie Neurosurgery, Kochi, JapanGoogle Scholar
  27. Raimondi AJ (1987) Pediatric neurosurgery. Theoretical principles, art of surgical techniques. Springer, New York Berlin HeidelbergGoogle Scholar
  28. Reulen HJ, Tsuyamu M, Tack A, Fenske AR, Prioleau GR (1978) Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg 48: 754–764Google Scholar
  29. Saint-Rose C, La Combe J, Pierre-Kahn T, Renier D, Hirsch J (1984) Intracranial venous sinus hypertension: Cause or consequence of hydrocephalus in infants? J Neurosurg 60: 727–736CrossRefGoogle Scholar
  30. Sato O (1986) Changes in concept: Mechanisms of genesis in hydrocephalus. Nerv Syst Child 11: 195–202Google Scholar
  31. Sato O, Asai T, Amano Y, Hara M, Tugane R, Yagi M (1972) Extraventricular origin of the cerebrospinal fluid: Formation rate quantitatively measured in the spinal subarachnoid space of dogs. J Neurosurg 36: 276–282PubMedCrossRefGoogle Scholar
  32. Sklar FH, Beyer CW, Ramananthan M, Cooper PR, Clark WK (1979) Cerebrospinal fluid dynamics in patients with pseudotumor cerebri. Neurosurgery 5: 208–216PubMedCrossRefGoogle Scholar
  33. Whittle IR, Johnston IH, Besser M (1985) Intracranial pressure changes in arrested hydrocephalus. J Neurosurg 62: 77–82PubMedCrossRefGoogle Scholar
  34. Wislock GB, Putnum TJ (1921) Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat 29: 313–320CrossRefGoogle Scholar
  35. Wozniak M, McLone DG, Raimondi AJ (1975) Micro-and macrovascular changes as the direct cause of parenchymal destruction in congenital murine hydrocephalus. J Neurosurg 43: 535–545PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Koreaki Mori
    • 1
  1. 1.Department of NeurosurgeryKochi Medical SchoolNankoku, Kochi, 783Japan

Personalised recommendations