Skip to main content

Biomechanical Analysis of Hydrocephalus by Different Physical Models

  • Conference paper
Book cover Hydrocephalus

Summary

The finite element method (FEM), an advanced numerical method supported by computer technology, was introduced to the biomechanical research on hydrocephalus. In the present study, comparative analysis of intracerebral biomechanics in hydrocephalus was conducted using different physical models.

First, two dimensional finite element analysis with elastic models was performed to clarify the intracerebral stress distribution in hydrocephalus. It showed a characteristic tensile stress concentration at the anterolateral angle of the lateral ventricle. The distribution of stress concentration coincided with the distribution of periventricular lucency on computed tomography (CT) scan. The periventricular tensile stress concentration was decreased by the enlargement of the ventricle. Second, simulation using a hyper-elastic model showed the same pattern of intracerebral stress distribution as the elastic model. However, the former showed wider distribution than the latter. Third, a poroeleastic model was introduced. The poroelastic model is a first approximation of Hakim’s concept of the “open cell sponge”, and it describes cerebrospinal fluid (CSF)/tissue interaction in the hydrocephalic process. The progress of ventricular dilatation and the extension of periventricular cerebrospinal fluid edema were well represented by the poroelastic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoyagi N, Masuzawa H, Sano K, Kobayashi S (1980) Compliance of the brain. No To Shinkei 32: 47–56

    PubMed  CAS  Google Scholar 

  • Davson H (1967) Physiology of the cerebrospinal fluid. Churchill, London

    Google Scholar 

  • Fenstermacher JD, Patlak CS (1976) The movement of water and solute in the brain of mammals. In: Pappius HM, Feindel W (eds) The dynamics of brain edema. Springer, New York, pp 87–94

    Chapter  Google Scholar 

  • Fitz CR, Harwood-Nash DC, Chung S, Siesjo IM (1978) Metrizamide ventriculography and computed tomography in infants and children. Neuroradiology 16: 6–9

    Article  PubMed  CAS  Google Scholar 

  • Hakim S, Hakim C (1984) A biomechanical model of hydrocephalus and its relationship to treatment. In: Shapiro K, Marmarou T, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 143–160

    Google Scholar 

  • Hiratsuka H, Keigo F, Kodai O, Tskasato Y, Matsushita T, Yutani I (1979) Modification of periventricular reflux in metrizamide CT cisternography. J Comput Assist Tomogr 3: 204–208

    Article  PubMed  CAS  Google Scholar 

  • Marmarou T (1984) Biomechanics and theoretical models of hydrocephalus: Summary. In: Shapiro K, Marmarou T, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 193–195

    Google Scholar 

  • Marmarou A, Shapiro K, Poll W, Shulman K (1978) Study of kinetics of fluid movement within brain tissue. In: Bek JWF, Bosch DA, Brock M (eds) Intracranial Pressure III. Springer, New York, pp 1–4

    Google Scholar 

  • Milhorat TH, Clark RG, Hammock MK, McGrath PP (1970) Structural, ultrastructural, and permeability changes in ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22: 397–407

    Article  PubMed  CAS  Google Scholar 

  • Mosely IF (1979) Factors influencing the development of periventricular lucencies in patients with raised intracranial pressure. Neuroradiology 17: 65–69

    Article  Google Scholar 

  • Nagashima T, Tamaki N, Matsumoto S, Seguchi Y, Tamura T (1984) Biohmechanics of vasogenic brain edema: An application of the finite element method. In: Klazo I, Spaz M (eds) Brain edema. Springer, Berlin, pp 92–98

    Google Scholar 

  • Nagashima T, Tamaki N, Matsumoto S, Horwits B, Seguchi Y (1987) Biomechanics of hydrocephalus: A new theoretical model. Neurosurgery 21: 898–904

    Article  PubMed  CAS  Google Scholar 

  • Ommaya AK (1968) Mechanical properties of tissue of the nervous system. J Biomech 1: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Pasquini U, Bronzini M, Gozzol E, Mancini F, Salvolini U (1977) Periventricular hypodensity in hydrocephalus: A clinicopathological and mathematical analysis using computed tomography. J Comput Assist Tomogr 1: 443–448

    Article  PubMed  CAS  Google Scholar 

  • Penn RD, Bucus JW (1984) The brain as a sponge: a computed tomographic look at Hakim’s hypothesis. Neurosurgery 14: 670–675

    Article  PubMed  CAS  Google Scholar 

  • Rall DP, Oppelt WW, Patlak CS (1962) Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci 1: 43–48

    Article  Google Scholar 

  • Rapoport SI (1978) A mathematical model for vasogenic brain edema. J Theor Biol 74: 439–467

    Article  PubMed  CAS  Google Scholar 

  • Reulen HJ, Graham R, Spatz M, Klazo I (1977) Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 46: 24–35

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, Kyner WT, Estrada E (1980) Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol 238: 42–49

    Google Scholar 

  • Sahar A, Hochwald GM, Ransohoff J (1970) Experimental hydrocephalus: Cerebrospinal fluid formation and ventricular size as a function of intraventricular pressure. J Neurosci 11: 81–91

    CAS  Google Scholar 

  • Walsh EK, Alfonso S (1976) Elastic behavior of brain tissue in vivo. Am J Physiol 260: 1058–1062

    Google Scholar 

  • Weiler RO, Michell J (1980) Cerebrospinal fluid edema and its sequellae in hydrocephalus. In: Cervosr-Navaro J, Ferszt R (eds) Brain edema. Raven, New York, pp 111–123

    Google Scholar 

  • Zienkiewicz OC (1970) The finite element method. McGraw Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Nagashima, T., Hamano, S., Tamaki, N., Matsumoto, S., Tada, Y. (1991). Biomechanical Analysis of Hydrocephalus by Different Physical Models. In: Matsumoto, S., Tamaki, N. (eds) Hydrocephalus. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68156-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68156-4_28

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68158-8

  • Online ISBN: 978-4-431-68156-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics