Skip to main content

Brain Aging and Trace Elements in Human: Clues into the Pathogenesis of Alzheimer’s Disease

  • Conference paper
Trace Elements in Clinical Medicine
  • 207 Accesses

Abstract

The relationship between three trace elements (aluminium, zinc and selenium) and Alzheimer’s disease is reviewed. Several arguments are discussed towards the role of these trace elements in the formation of the cardinal histologic lesions found in the brain, respectively, neurofibrillary tangles with aluminium, senile plaques and amyloid deposits with zinc, and lipofuschin with selenium. Aluminium may exert its primary action in the olfactory bulb. The neurotoxicity of aluminium is secondary to an alteration of calcium homeostasis, and/or of chromatin in the nucleus of neurons. Hippocampal zinc changes may result in an alteration in the activity of excitatory amino-acids and/or Cu-Zn superoxide dismutase. Finally, a decrease in brain selenium and glutathione peroxidase could lead to the deleterious effect of an increased production of free radicals. However, none of these mechanisms are mutually exclusive and the complex process of brain aging is in fact the result of multiple events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfrey AC, LeGendre GR, Kaehney WD (1976) The dialysis encephalopathy syndrome: Possible aluminium intoxication. N Engl J Med 294: 184–188.

    Google Scholar 

  • Ball MJ (1978) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients. A quantitative study. Acta Neuropath (Berlin) 43: 73–80.

    Article  Google Scholar 

  • Birchall JD, Chappell JS (1988) Aluminium, chemical physiology, and Alzheimer’s disease. Lancet 1: 1008–1010.

    Article  Google Scholar 

  • Bourre JM (1988) The effect of dietary lipids on the Central Nervous System in aging and disease: Importance of protection against free radicals and peroxidation. In: Bergener M, Ermini M, Stâhelin HB (eds) Crossroads in aging. The 1988 Sandoz lectures in gerontology. Academic Press, London, p 141–167.

    Google Scholar 

  • Bourrier-Guerin L, Mauras Y, Truelle JL, Allain P (1985) CSF and plasma concentrations of 13 elements in various neurological disorders. Trace Elements in Medicine 2: 88–91.

    Google Scholar 

  • Burger PC, Vogel FS (1973) The development of the pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. Am J Pathol 73: 457–476.

    PubMed  CAS  Google Scholar 

  • Burnet FM (1981) A possible role of zinc in the pathology of dementia Lancet 1: 186–188.

    CAS  Google Scholar 

  • Carlisle EM (1974) Silicon as an essential element. Fed Proc 33: 1758–1766.

    PubMed  CAS  Google Scholar 

  • Crapper McLachlan DR, Farnell BJ (1985) Aluminium and neuronal degeneration. In: Gabay S, Harris J, Ho BT (eds) Neurology and neurobiology, vol 15, Metal ions in neurology and psychiatry. Alan R Liss, Inc, New York, p 69–87.

    Google Scholar 

  • Crapper McLachlan DR, Farnell B, Galin H, Karlik S, Eichorn G., De Boni U (1983) Aluminium in human brain disease. In: Sarkar B (ed) Biological aspects of metals and metal-related diseases. Raven Press, New York, p 209–219.

    Google Scholar 

  • Crapper DR, Krishnan SS, Quittkat S (1976) Aluminium neurofibrillary de-generation and Alzheimer’s disease. Brain 99: 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Crawford IL (1983) Zinc in the hippocampus. In: Dreosti IE, Smith RM (eds) Neurobiology of the trace elements, vol 1. Humana, Clifton, NJ, p 163–211.

    Google Scholar 

  • Constantinidis J (1988) Méthodologie des correlations anatomo-cliniques appliquées à la recherche sur la maladie d’Alzheimer. Psychol Med 20: 1815–1820.

    Google Scholar 

  • Dardenne M, Pléau JM, Nabarra B, Lefrancier P, Derrien M, Choay J, Bach JF (1982) Contribution of zinc and other metals to the biological activity of the serum thymic factor. Proc Natl Acad Sci USA 79: 5370–5373.

    Article  PubMed  CAS  Google Scholar 

  • Delacourte A, Defossez A (1986) Alzheimer’s disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. J Neurol Sci 76: 173–186.

    Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased iron content and alterations in other metal ions in brain in Parkinson’s disease. J Neurochem 52: 1830–1836.

    Article  PubMed  CAS  Google Scholar 

  • Doty RL, Shaman P, Applebaum SL, Giberson R, Siksorski L, Rosenberg L (1984)

    Google Scholar 

  • Smell identification ability: changes with age. Science 226: 1441–1443.

    Google Scholar 

  • Duckett S, Galle P (1985) The application of analytical ion microscopy (secondary ion mass microanalysis) to the study of normal and pathological neural tissue. In: Gabay S, Harris J, Ho BT (eds) Neurology and neurobiology, vol 15, Metal ions in neurology and psychiatry. Alan R Liss, Inc, New York, p 345–366.

    Google Scholar 

  • Farnell BJ, Crapper McLachlan DR, Bainbridge K, De Boni U, Wong L, Wood PL (1985) Calcium metabolism in the aluminium encephalopathy. Exp Neurol 88: 68–83.

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Howell GA, Kasarskis EJ (1984) The neurobiology of zinc, vol 11 A and 11 B Alan R Liss, Inc, New York.

    Google Scholar 

  • Halas ES (1983) Behavioral changes accompanying zinc deficiency in animals. In: Dreosti IE, Smith RM (eds) Neurobiology of the trace elements, vol 1, Humana, Clifton, NJ, p 213–243.

    Chapter  Google Scholar 

  • Halsted JA, Ronaghy HA, Abadi P, Haghshenass M, Amirhakemi GH, Barakat RM, Reinhold JG (1972) Zinc deficiency in man: Shiraz experiment. Am J Med 53: 277–284.

    Google Scholar 

  • Hock A., Demmel U, Schicka H, Kasperek K, Feinendegen LE (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain 98: 44–64.

    Google Scholar 

  • Kapaki E, Segditsa J, Papageorgiou C (1989) Zinc, copper and magnesium concentrations in serum and CSF of patients with neurological disorders. Acta Neurol Scand 79: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Lai F, Williams RS (1989) A prospective study of Alzheimer disease in Down syndrome. Arch Neurol 46: 849–853.

    PubMed  CAS  Google Scholar 

  • Lai JCK, Chan AWK, Minski MJ, Leung TKC, Lim L, Davison AN (1985) Application of instrumental neutron activation analysis to the study of trace metals in brain and metal toxicity. In: Gabay S, Harris J, Ho BT (eds) Neurology and neurobiology, vol 15, Metal ions in neurology and psychia¬try. Alan R Liss, Inc, New York, p 323–343.

    Google Scholar 

  • Mann DMA (1985) The neuropathology of Alzheimer’s disease: A review with pathogenic, aetiological and therapeutic considerations. Mech Ageing Dev 31: 213–255.

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR, Ehmann WD, Alauddin M., Hossain TIM (1984) Brain trace element concentrations in aging. Neurobiol Aging 5: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Martyn CN, Osmond C, Edwardson JA, Barker DJP, Harris EC, Lacey RF (1989) Geognaphical relation between Alzheimer’s disease and aluminium in drinking water. Lancet 1: 59–62.

    PubMed  CAS  Google Scholar 

  • Ohm TG, Braak H (1987) Olfactory bulb changes in Alzheimer’s disease. Acta Neuropath 73: 365–369.

    Article  PubMed  CAS  Google Scholar 

  • Perl DP, Brody AR (1980) Alzheimer’s disease: X-ray-spectrometric evidence for aluminium accumulation in neurofibrillary tangle-bearing neurons. Science 208: 297–299.

    Google Scholar 

  • Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236: 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Piggott L, Caldwell D, Oberleas D (1974) Zinc deficiency, disturbed children and civil rights. Biol Psychiat 9: 325–327.

    PubMed  CAS  Google Scholar 

  • Prasad AS (1982) Current topics in nutrition and disease, vol 6, Clinical, biochemical, and nutritional aspects of trace elements. Alan R Liss, Inc, New York.

    Google Scholar 

  • Prasad AS, Dreosti IE, Hetzel BS (1982) Current topics in nutrition and disease, vol 7, Clinical applications of recent advances in zinc metabolism. Alan R Liss, Inc, New York.

    Google Scholar 

  • Prohaska JR (1983) Neurochemical aspects of selenium. In: Dreosti IE, Smith RM (eds) Neurobiology of trace elements, vol 1. Humana, Clifton, NJ, p 245–268.

    Chapter  Google Scholar 

  • Prohaska JR (1987) Functions of trace elements in brain metabolism. Physiol Rev 67: 858–901.

    PubMed  CAS  Google Scholar 

  • Prohaska JR, Ganther HE (1976) Selenium and glutathione peroxidase in developing rat brain. J Neurochem 27: 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  • Rezek DL (1987) Olfactory deficits as a neurologic sign in dementia of the Alzheimer’s type. Arch Neurol 44: 1030–1032.

    PubMed  CAS  Google Scholar 

  • Roberts E (1986) Alzheimer’s disease may begin in the nose and may be caused by aluminosilicates. Neurobiol Aging 7: 561–567.

    Article  PubMed  CAS  Google Scholar 

  • Sandstead HH (1986) A brief history of the influence of trace elements on brain function. Am J Clin Nutr 43: 293–298.

    PubMed  CAS  Google Scholar 

  • Shipley MT (1985) Transport of molecules from nose to brain: Transneural anterograde and retrograde labelling in the rat olfactory system by WGA-HRP applied to the nasal epithelium. Brain Res Bull 15: 129–142.

    Article  PubMed  CAS  Google Scholar 

  • Smeyers-Verbeke J, Defrise-Gussenhoven E, Ebinger G, Lowenthal A, Massart DL (1974) Distribution of Cu and Zn in human brain tissue. Clin Chim Acta 51: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Solomons NW (1986 a) Trace elements in nutrition of the elderly, 1. Established RDAs for iron, zinc and iodine. Postgraduate Med 79: 231–250.

    Google Scholar 

  • Solomons NW (1986 b) Trace elements in nutrition of the elderly, 2, SADDIs for copper, manganese, selenium, chromium, molybdenum and fluoride. Postgraduate Med 79: 251–263.

    Google Scholar 

  • Szerdahelyi P, Kasa P, Fisher A, Hanin I (1984) Effects of the cholinotoxin, AF 64 A, on neuronal trace-metal distribution in the rat hippocampus and neocortex. Histochemistry 81: 497–500.

    Article  PubMed  CAS  Google Scholar 

  • Talamo BR, Rudel RA, Kosik KS, Lee VMY, Neff S, Adelman L, Kauer JS (1989) Pathological changes in olfactory neurons in patients with Alzheimer’s disease. Nature 337: 736–739.

    Article  PubMed  CAS  Google Scholar 

  • Tan YH, Tischfield J, Ruddle FH (1973) The linkage of genes to the human interferon-induced antiviral protein and indophenol oxidase-B traits to chromosome G-21. J Exp Med 137: 317–330.

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Pena C (1965) Experimental production of neurofibrillary dege¬neration. 2. Electron microscopic, phosphatase histochemistry and electron probe analysis. J Neuropathol Exp Neurol 24: 200–210.

    Google Scholar 

  • Vanella A, Geremia E, D’Urso G, Tiriolo P, Di Silvestro K, Grimaldi R, Pinturo R (1982) Superoxide dismutase activities in aging rat brain. Gerontology 28: 108–113.

    Article  PubMed  CAS  Google Scholar 

  • Walker PR, LeBlanc J, Sikorska M (1989) Effects of aluminium and other cations on the structure of brain and liver chromatin. Biochemistry 28: 3911–3915.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski H, Naranny H, Terry R (1976) Neurofibrillary tangle of paired helical filaments. J Neurol Sci 27: 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Yates CM, Simpson J, Russell D, Gordon A (1980) Cholinergic enzymes in neurofibrillary degeneration produced by aluminium. Brain Res 197: 269–274.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Tokyo

About this paper

Cite this paper

Chazot, G., Broussolle, E. (1990). Brain Aging and Trace Elements in Human: Clues into the Pathogenesis of Alzheimer’s Disease. In: Tomita, H. (eds) Trace Elements in Clinical Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68120-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68120-5_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68122-9

  • Online ISBN: 978-4-431-68120-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics