Skip to main content

Modification at the Reconstruction in Holographic Interferometry

  • Conference paper
Photoelasticity
  • 159 Accesses

Abstract

Holography exhibits the two following features in addition to other properties:

Firstly a hologram can store at a recording a wave field emanating from an object, which may be reconstructed by diffraction at any subsequent time by means of a reference wave, thereby creating an image of the object in space.

Secondly it is possible to modify the constructed wave field by shifting the reference source, by deforming the hologram, or by changing the wavelength of light, thereby changing the image resulting in aberration and virtual deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Abramson N. (1974): Sandwich hologram interferometry: A new dimension in holographic comparison, Appl. Opt. 13: 2019–2025

    ADS  Google Scholar 

  2. Abramson N. (1975): Sandwich hologram interferometry 2: Some practical calculations, Appl. Opt. 14: 981–984

    ADS  Google Scholar 

  3. Abramson N. (1977): Sandwich hologram interferometry 4: Holographic studies of two milling machines, Appl. Opt. 17: 2521–2531

    ADS  Google Scholar 

  4. Abramson N., Bjelkhagen H. (1978): Pulsed sandwich holography 2: Practical application, Appl. Opt. 17: 187–191

    ADS  Google Scholar 

  5. Abramson N., Bjelkhagen H. (1979): Sandwich hologram interferometry 5: Measurement of in-plane displacement and compensation for rigid body motion, Appl. Opt. 18: 2870–2880

    ADS  Google Scholar 

  6. Abramson N., Bjelkhagen H., Skande P. (1979): Sandwich holography for storing information interferometrically with a high degree of security, Appl. Opt. 18: 2017–2021

    ADS  Google Scholar 

  7. Abramson N., Bjelkhagen H. (1980): Deformation, displacement and vibration investigations in manufacturing applications using a new hologram interferometra technique, Opt. Lasers Eng. 1: 51–68

    Article  Google Scholar 

  8. Abramson N. (1981): Making and Evaluation of Holograms, Academic Press, London

    Google Scholar 

  9. Amadesi S., D’Altorio A., Paoletti D. (1982): Sandwich holography for painting diagnostics, Appl. Opt. 21: 1889–1890

    ADS  Google Scholar 

  10. Bjelkhagen H. (1977): Pulsed sandwich holography, Appl. Opt. 16: 1727–1731

    ADS  Google Scholar 

  11. Churnside J.H., Yura H.T. (1982): Laser vector velocimetry: A 3-D measurement technique, Appl. Opt. 21: 845–850

    ADS  Google Scholar 

  12. Cuche D., Schumann W. (1983): Fringe modification with amplification in holographic interferometry and application of this to determine strain and rotation, SPIE Vol. 398: 35–45

    Google Scholar 

  13. Cuche D., (1984): “Modification des franges d’interférence en interférométrie holographique appliquée à la détermination des dilatations et des rotations” Thesis ETH Zürich No. 7459

    Google Scholar 

  14. Dändliker R., Ineichen B., Mottier F.M. (1973): High resolution hologram interferometry by electronic phase measurement, Opt. commun. 9: 412–416

    ADS  Google Scholar 

  15. Dändliker R., Ineichen B., Mottier F.M. (1974): Electric processing of holographic interferograms, in Digest of Papers, Int. Opt. Computing Conf. Zürich (IEEE, New York, 1974): 69–72

    Google Scholar 

  16. Dändliker R. Marom E., Mottier F.M. (1976): Two-reference-beam holographic interferometry, J. Opt. Soc. Am. 66: 23–30

    Article  ADS  Google Scholar 

  17. Dändliker R. (1980): “Heterodyne holographic Interferometry” in Progress in Optics, vol. XVII, chap. 1 (North-Holland, Amsterdam)

    Google Scholar 

  18. Dändliker R., Willemin J.F. (1981): Measuring microvibrations by heterodyne speckle interferometry, Opt. Lett. 6: 165–167

    Article  ADS  Google Scholar 

  19. Dändliker R. (1982): Measuring displacement, velocity and vibration by laser interferometry, in Optoelectronics in Engineering, ed. by W. Waidelich (Springer-Verlag, Berlin): 52–58

    Google Scholar 

  20. Decker A.J., Pao Y.H., Claspy P.C. (1978): Electronic heterodyne recording and processing of optical holograms using phase modulated reference waves, Appl. Opt. 17: 917–921

    ADS  Google Scholar 

  21. De Larminat P.M., Wei R.P. (1976): A fringe-compensation technique for stress analysis by reflection holographic interferometry, Exp. Mech. 16: 241–248

    Google Scholar 

  22. Dirtoft I., Abramson N., Sandström U. (1979): Holographic measuring of deformations in complete upper dentures, SPIE Vol. 211: 106–110

    Google Scholar 

  23. Doty J.L., Hildebrand B.P. (1982): The use of sandwich hologram interferometry for nondestructive testing of nuclear reactor components, Opt. Eng. 21: 542–547

    Google Scholar 

  24. Dubas M., Schumann W. (1977): Contribution à l’étude théorique des images et des franges produites par deux hologrammes en sandwich, Opt. Acta 24: 1193–1209

    Google Scholar 

  25. Dudderar T.D., Doerries E.M. (1979): Application of holographic interferometry to real-time studies of heat effects in multilayer circuit boards, Mat. Evaluation 37: 41–50

    Google Scholar 

  26. Fischer B., Cronin-Golomb M., White J.O., Yariv A. (1981): Amplified reflection, transmission, and self-oscillation in real-time holography, Opt. Lett. 6: 519–521

    Google Scholar 

  27. Friesem A.A., Levy U. (1976): Fringe formation in two-wavelength contour holography, Appl. Opt. 16: 3009–3020

    ADS  Google Scholar 

  28. Haines K.A., Hildebrand B.P. (1965): Contour generation by wavefront reconstruction, Phys. Lett. 19: 10–11

    Google Scholar 

  29. Hariharan P., Hegedus Z.S. (1976): Two-hologram interferometry: A simplified sandwich technique, Appl. Opt. 15: 848–849

    ADS  Google Scholar 

  30. Hariharan P. (1977): Hologram Interferometry: Identification of the sign of surface displacements, Opt. Acta 24: 989–990

    Google Scholar 

  31. Hariharan P., Oreb B.F., Brown N. (1983): A digital system for real-time holographic stress analysis, SPIE Vol. 370: 189–194

    Google Scholar 

  32. Hariharan P., Oreb B.F., Brown N. (1983): Real-time holographic interferometry: A microcomputer system for the measurement of vector displacements, Appl. Opt. 22: 876–880

    ADS  Google Scholar 

  33. Hildebrand B.P., Haines K.A. (1967): Multiple-wavelength and multiple-source holography applied to contour generation, J. Opt. Soc. Am. 57: 155–162

    Article  ADS  Google Scholar 

  34. Hoffer T.M., Fischer W. (1977): Abnahme von Werkzeugmaschinen mit einem Laser-Messystem, Feinwerktechnik & Messtechnik 85, (I): 229–235, (II): 343–359

    Google Scholar 

  35. Hsu T.R. (1974): Large-deformation measurements by real-time holographic interferometry, Exp. Mech. 14: 408–411

    Google Scholar 

  36. Ineichen B., Dändliker R., Mottier F.M. (1977): Accuracy and reproducibility of heterodyne holographic interferometry, in Applications of Holography and Optical Data Processing, ed. by E. Marom, A.A. Friesem, E. Wiener-Avnear (Pergamon Press, Oxford: 207–212

    Google Scholar 

  37. Krepelkova H. (1980): The application of holographic interferometry to the analysis of composite material structure, Opt. Appl. X: 91–97

    Google Scholar 

  38. Küchel F.M., Tiziani H.J. (1981): Real-time contour holography using BSO crystals, Opt. Commun. 38: 17–20

    ADS  Google Scholar 

  39. Leung K.M., Lee T.C., Bernai E., Wyant J.C. (1979): Two-wavelength contouring with the automated thermoplastic holographic camera, SPIE Vol. 192: 184–189

    ADS  Google Scholar 

  40. Menzel E. (1974): Comment to the methods of contour holography Optik 40: 557–559

    Google Scholar 

  41. Morizov N.V., Ostrovskii Y.I., Boeva L.M. (1982): Real-time holographic interferometry of moving objects in oppositely directed beams, Zh. Tekh. Fiz. 52: 1854–1858

    Google Scholar 

  42. Nisida M., Saito H. (1964): A new interferometric method of two-dimensional stress analysis, Exp. Mech. 4 (12): 366–376

    Google Scholar 

  43. Politch J. (1982): Real-time imaging and strain distribution of an angularly vibrating diffused plate, Opt. Acta 29: 485–492

    Google Scholar 

  44. Schumann W., Zürcher J.-P., Cuche D. (1985): Holography and Deformation Analysis (Springer, Heidelberg, Berlin, New York, Tokyo)

    Google Scholar 

  45. Sciammarella CA., Rastogi P.K., Jacquot P., Narayanan R. (1982): Holographic moiré in real time Exp. Mech. 22: 52–63

    Google Scholar 

  46. Shapiro J.H., Capron B.A., Harney R.C. (1981): Imaging and target detection with a heterodyne-reception optical radar, Appl. Opt. 20: 3292–3313

    ADS  Google Scholar 

  47. Sommargren G.E. (1981): Optical heterodyne profilometry, Appl. Opt. 20: 610–618

    ADS  Google Scholar 

  48. Tiziani H.J. (1982): Real-time metrology with BSO crystals, Opt. Acta 29: 463–470

    Google Scholar 

  49. Uyemura T., Yamamoto Y., Tenjimbayashi K., Yokoyama N. (1979): Real-time holographic interferometry with pulsed laser, SPIE Vol. 192: 190–195

    ADS  Google Scholar 

  50. Varner J.R. (1971): Simplified multiple-frequency holographic contouring, Appl. Opt. 10: 212–213

    ADS  Google Scholar 

  51. Vukicevic S., Vinter I., Vukicevic D. (1983): Sandwich hologram interferometry for determination of sacroiliac joint movements, SPIE Vol 370: 129–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Tokyo

About this paper

Cite this paper

Schumann, W. (1986). Modification at the Reconstruction in Holographic Interferometry. In: Nisida, M., Kawata, K. (eds) Photoelasticity. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68039-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68039-0_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68041-3

  • Online ISBN: 978-4-431-68039-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics