Skip to main content
Book cover

Cyberworlds pp 81–109Cite as

Simulation of the Growth of Plants — Modeling of Metamorphosis and Spatial Interactions in the Architecture and Development of Plants —

  • Chapter

Summary

In the past, numerous techniques have been used in the representation of plants. The Plants Modeling Unit of CIRAD developed an original method of plant growth simulation based on botanical notions of plant architecture. But in simulating metamorphosis, the notion of a reference axis which shows all the stages of differenciation in a branch throughout its growth is needed. Also, if we consider the simultaneity of biological events which characterize a plant’s functioning, we can study the environmental (nutrition and precipitation needs) and spatial (crowding, light influence) interactions. The reference axis is structured like a finite automaton and the discrete events simulation (scheduler) is used for the parallel simulation of the growth.

Key words

  • natural phenomena
  • plant architecture
  • botany
  • reference axis
  • growth simulation
  • ring simulation
  • finite automaton
  • scheduler
  • environmental and spatial interactions.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-67941-7_6
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-4-431-67941-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aono, M., Kunii, T. L., 1984. Botanical tree image generation. IEEE Computer Graphics and Applications, Vol. 4(5), pp 10–33.

    CrossRef  Google Scholar 

  2. Barczi, J. F., Reffye (de) Ph., Caraglio, Y., 1997. Essai sur l’identification et la mise en oeuvre des paramètres nécessaires à la simulation d’une architecture végétale: le logiciel AMAPsim. In Bouchon J., Reffye (de) Ph. & Barthélémy D. (Eds), Modélisation et simulation de l’architecture des végétaux, INRA, Science Update,.pp. 205-254.

    Google Scholar 

  3. Barthélémy, D., 1988. Architecture et sexualité chez quelques plantes tropicales: le concept de floraison automatique. Thèse Doct., Physiologie, Biologie des Organismes et des Populations, Montpellier, France.

    Google Scholar 

  4. Barthélémy, D., Blaise, F., Fourcaud, T., Nicolini, E., 1995. Modélisation et simulation de l’architecture des arbres: bilan et perspectives. Revue forestière française, n° spécial “Modélisation de la croissance des arbres forestiers et de la qualité des bois”, 71-96.

    Google Scholar 

  5. Barthélémy, D., Caraglio, Y., Costes, E., 1997. Architecture, gradients morphogénétiques et âge physiologique chez les végétaux. In Bouchon J., Reffye (de) Ph. & Barthélémy D. (Eds), Modélisation et simulation de l’architecture des végétaux, INRA, Science Update, pp. 89-136.

    Google Scholar 

  6. Blaise, F., 1991. Simulation du parallélisme dans la croissance des plantes et application. Thèse 3ème cycle, spécialité informatique, N°1071, Université Louis Pasteur, Strasbourg, France.

    Google Scholar 

  7. Blaise F., Houllier F., Reffye (de) Ph., 1996. Simulation of tree architecture and growth in a forest stand: AMAPpara software. In G. Nepveu (Ed.), Connection between silviculture and wood quality through modelling approaches and simulation softwares, IUFRO WPS5.01.04 Workshop (Hook, Sweden, 13-17/06/94), INRA, Nancy, pp. 46-55.

    Google Scholar 

  8. Dauzat, J., Eroy, N. M., 1996. Simulating light regime and intercrop yields in coconut based farming systems. European Society for Agronomy, 7-11 July, Wageningen, The Netherlands, 16 pp.

    Google Scholar 

  9. Dulk (den), J. A., 1989. The Interpretation of Remote Sensing, a feasibility study. Master’s thesis, Wageningen Agricultural University, Neederland.

    Google Scholar 

  10. Eyrolles, G., Viennot, G., Françon, J., 1986. Combinatoire pour la synthèse d’images réalistes de plantes. 2éme Semaine de l’Image Electronique, Nice, France.

    Google Scholar 

  11. Fisher, J. B., Honda, H., 1979. Branch geometry and effective leaf area: a study of terminalia branching pattern-1-theoretical trees.-2-survey of real trees. Amer. J. Bot, Vol. 66, pp 633–644, 645-655.

    CrossRef  Google Scholar 

  12. Fournier, A., 1987. Prolegomenon in Modeling of Natural Phenomena. Course notes #16, Siggraph ′87, Anaheim.

    Google Scholar 

  13. Françon, J., 1990. Sur la modélisation informatique de l’architecture et du développement des végétaux. 2éme Colloque International “L’Arbre”, Institut de Botanique, Montpellier, France.

    Google Scholar 

  14. Gardner, G. Y., 1984. Simulation of Natural Scenes using Textured Quadrics Surfaces. Computer Graphics, Vol. 18(3), pp 11–20.

    CrossRef  Google Scholar 

  15. Godin, C., Guédon, Y., Costes, E., Caraglio, Y., 1997. Measuring and analysing plants with the AMAPmod software. In Marek T. Michalewicz (ed.), Advances in computational life sciences: Plants to ecosystems, CSIRO, Australia: 53–84.

    Google Scholar 

  16. Goethe (von), J. W., 1790. La métamorphose des plantes. Traduction de Bideau, H., 1975, Editions Triades, Paris.

    Google Scholar 

  17. Green, N., 1989. Voxel space automata: modeling with stochastic growth processes in voxel space. Computer Graphics, Vol. 23(3), pp 175–184.

    CrossRef  Google Scholar 

  18. Guédon, Y., 1997. Modélisation de la séquence d’événements décrivant la mise en place d’éléments botaniques. In Bouchon J., Reffye (de) Ph. & Barthélémy D. (Eds), Modélisation et simulation de l’architecture des végétaux, INRA, Science Update, pp. 187-202.

    Google Scholar 

  19. Guédon Y., Costes E., 1997. Modélisation de la croissance d’un axe végétatif. In Bouchon J., Reffye (de) Ph. & Barthélémy D. (Eds), Modélisation et simulation de l’architecture des végétaux, INRA, Science Update, pp. 173-185.

    Google Scholar 

  20. Hallé, F., Oldeman, R. A. A., 1970. Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson and Cie.

    Google Scholar 

  21. Hall’, F., Oldeman, R. A. A., Tomlinson, P. B., 1978. Tropical Trees and Forests. Springer Verlag, Berlin, Heidelberg, New-York, 441p.

    CrossRef  Google Scholar 

  22. Hart, J. C., DeFanti, T. A., 1991. Efficient Antialiaised Rendering of 3-D Linear Fractals. Computer Graphics, Vol. 25(4), pp. 91–100.

    CrossRef  Google Scholar 

  23. Jaeger, M., 1987. Représentation et Simulation de Croissance des végétaux. Thèse 3éme cycle, spécialité informatique, N°328, Université Louis Pasteur, Strasbourg, France.

    Google Scholar 

  24. Jaeger, M., Reffye (de), Ph., 1991. Basic concepts of computer simulation of plant growth. Journal of Biosciences, Vol. 17(3), pp 275–291.

    CrossRef  Google Scholar 

  25. Kawagushi, Y., 1982. A morphological Study of the Forme of Nature. Computer Graphics, Vol. 16(3), p 223–232.

    CrossRef  Google Scholar 

  26. Leroudier, J., 1980. La simulation à événements discrets. Monographies d’informatique de l’AFCET, Hommes et Techniques Edition.

    Google Scholar 

  27. Mech, R., Prusinkiewicz, P., 1996. Visual Models of Plants Interacting with their Environment. Proceedings of SIGGRAPH 96 (New Orleans, Louisiana, August 4–9, 1996). In Computer Graphics Proceedings, Annual Conference Series, 1996, ACM SIGGRAPH, pp. 397-410.

    Google Scholar 

  28. Nelson, M., 1990. Cone-Spheres. Computer Graphics, Vol. 24(4), pp. 59–62.

    CrossRef  Google Scholar 

  29. Oppenheimer, E., 1986. Real time Design and Animation of Fractal Plants and Trees. Computer Graphics, Vol. 20(4), pp 55–64.

    CrossRef  Google Scholar 

  30. Prusinkiewicz, P., James, M., Mech, R., 1994. Synthetic topiary. Proceedings of SIGGRAPH 94 (Orlando, Florida, July 24–29, 1994). In Computer Graphics Proceedings, Annual Conference Series, 1994, ACM SIGGRAPH, pp. 351-358.

    Google Scholar 

  31. Prusinkiewicz, P., Hammel, M., Mjolsness, E., 1993. Animation of Plant Development. Proceedings of SIGGRAPH 93 (Anaheim, California, August 1–6, 1993), In Computer Graphics Proceedings, Annual Conference Series, 1993, ACM SIGGRAPH, pp. 351-360.

    Google Scholar 

  32. Reeves, W. T., Blau, R., 1985. Approximate and Probabilistic Algorithms for Shading and Rendering Structured Particle Systems. Computer Graphics, Vol. 19(3), pp 313–322.

    CrossRef  Google Scholar 

  33. Reffye (de), Ph., Dinouard, P., Jaeger, M., 1990. Basic concepts of computer plants growth simulation. NICOGRAPH′90 Computer Graphics: “Where do we go now that we’ve arrived?”, Tokyo, pp 219-234.

    Google Scholar 

  34. Reffye (de) Ph., Houllier F., Blaise F., Barthélémy D., Dauzat J., Auclair D., 1995. A model simulating above-and below-ground tree architecture with agroforestry applications. Agroforestry Systems, 30: 175–197.

    CrossRef  Google Scholar 

  35. Reffye (de) Ph., Houllier F., Blaise F., Fourcaud T., 1997. Essai sur les relations entre l’architecture d’un arbre et la grosseur de ses axes végétatifs. In Bouchon J., Reffye (de) Ph. & Barthélémy D. (Eds), Modélisation et simulation de l’architecture des végétaux, INRA, Science Update, pp. 255-423.

    Google Scholar 

  36. Rivals, P., 1965. Essai sur la croissance des arbres et sur leurs systèmes de floraison. Journée d’Agriculture Tropicale et de Botanique appliquée. Vol. XII(12), pp 655–686, Vol.XII(1–2–3), pp 91-122, Vol.XIV, pp 67-102.

    Google Scholar 

  37. Sims, K., 1991. Artificial Evolution for Computer Graphic. Computer Graphics, Vol. 25(4), pp 329–338.

    CrossRef  MathSciNet  Google Scholar 

  38. Smith, A. R., 1984. Plants, fractals and formal languages. Computer Graphics, Vol. 18(3),pp 1–10.

    CrossRef  Google Scholar 

  39. Viennot, X., Eyrolles, G., Janay, N., Arques, D., 1989. Combinatorial Analysis of Ramified Patterns and Computer Imagery of Trees. Computer Graphics, Vol. 23(3), pp.31–40.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Japan

About this chapter

Cite this chapter

Blaise, F., Barczi, JF., Jaeger, M., Dinouard, P., de Reffye, P. (1998). Simulation of the Growth of Plants — Modeling of Metamorphosis and Spatial Interactions in the Architecture and Development of Plants —. In: Kunii, T.L., Luciani, A. (eds) Cyberworlds. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67941-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67941-7_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70207-8

  • Online ISBN: 978-4-431-67941-7

  • eBook Packages: Springer Book Archive