Structure and Function of Insect Nicotinic Acetylcholine Receptors Studied with Nicotinoid Insecticide Affinity Probes

  • Motohiro Tomizawa
  • Bachir Latli
  • John E. Casida


The insect nicotinic acetylcholine (ACh) receptor (nAChR) is the target not only for the botanical insecticide nicotine but also for the synthetic nicotinoid insecticides such as imidacloprid (IMI) (Bai et al. 1991; Tomizawa and Yamamoto 1992, 1993; Liu and Casida 1993; Liu et al. 1993, 1995; Tomizawa et al. 1995a; Matsuo et al. 1998). Knowledge of the structure-activity relationship (SAR) of nicotinoids contributes to an understanding of the functional architecture of the nicotinic acetylcholine receptor (nAChR), a generic interrelationship of SAR and target site research applicable to any agrochemical or pharmaceutical. This approach has helped us to understand the action and selectivity of the new and increasingly important synthetic nicotinoid insecticides useful in controlling important pests and in resistance management programs (Casida and Quistad 1998).


Nicotinic Acetylcholine Receptor nAChR Subunit nAChR Subtype Neuronal Nicotinic Acetylcholine Receptor Torpedo Electric Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amar M, Thomas P, Wonnacott S, Lunt GG (1995) A nicotinic acetylcholine receptor subunit from insect brain forms a non-desensitising homo-oligomeric nicotinic acetylcholine receptor when expressed in Xenopus oocytes. Neurosci Lett 199:107–110PubMedCrossRefGoogle Scholar
  2. Arias HR (1997) Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Res Rev 25:133–191PubMedCrossRefGoogle Scholar
  3. Bai D, Lummis SCR, Leicht W, Breer H, Sattelle DB (1991) Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pestic Sci 33:197–204CrossRefGoogle Scholar
  4. Bertrand D, Ballivet M, Gomez M, Bertrand S, Phannavong B, Gundelfinger ED (1994) Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila α subunits. Eur J Neurosci 6:869–875PubMedCrossRefGoogle Scholar
  5. Bossy B, Ballivet M, Spierer P (1988) Conservation of neuronal nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J 7:611–618PubMedGoogle Scholar
  6. Breer H, Kleene R, Hinz G (1985) Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. J Neurosci 5:3386–3392PubMedGoogle Scholar
  7. Buckingham SD, Lapied B, Corronc HL, Grolleau F, Sattelle DB (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200:2685–2692PubMedGoogle Scholar
  8. Casida JE (1970) Mixed-function oxidase involvement in the biochemistry of insecticide synergists. J Agrie Food Chem 18:753–772CrossRefGoogle Scholar
  9. Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43:1–16PubMedCrossRefGoogle Scholar
  10. Chao SL, Casida JE (1997) Interaction of imidacloprid metabolites and analogs with the nicotinic acetylcholine receptor of mouse brain in relation to toxicity. Pestic Biochem Physiol 58:77–88CrossRefGoogle Scholar
  11. Chao SL, Dennehy TJ, Casida JE (1997) Whitefly (Hemiptera: Aleyrodidae) binding site for imidacloprid and related insecticides: a putative nicotinic acetylcholine receptor. J Econ Entomol 90:879–882PubMedGoogle Scholar
  12. David JA, Sattelle DB (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motorneuron of the cockroach (Periplaneta americana). J Exp Biol 108:119–136Google Scholar
  13. Hanke W, Breer H (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature 321:171–174PubMedCrossRefGoogle Scholar
  14. Hermans-Borgmeyer I, Zopf D, Ryseck R-P, Hovemann B, Betz H, Gundelfinger ED (1986) Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EMBO J 5:1503–1508PubMedGoogle Scholar
  15. Jonas P, Baumann A, Merz B, Gundelfinger ED (1990) Structure and developmental expression of the Dα2 gene encoding a novel nicotinic acetylcholine receptor protein of Drosophila melanogaster. FEBS Lett 269:264–268PubMedCrossRefGoogle Scholar
  16. Jonas PE, Phannavong B, Schuster R, Schröder C, Gundelfinger ED (1994) Expression of the ligand-binding nicotinic acetylcholine receptor subunit Dα2 in the Drosophila central nervous system. J Neurobiol 25:1494–1508PubMedCrossRefGoogle Scholar
  17. Kagabu S, Moriya K, Shibuya K, Hattori Y, Tsuboi S, Shiokawa K (1992) l-(6-Halonicotinyl)-2-nitromethylene imidazolidines as potential new insecticides. Biosci Biotechnol Biochem 56:362–363CrossRefGoogle Scholar
  18. Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15:1231–1244PubMedCrossRefGoogle Scholar
  19. Kishida H, Sakamoto N, Umeda K, Fujimoto H (1992) Preparation of nitropyrimidine derivatives as insecticides. Jpn Kokai Tokkyo Koho JP04,173,788; Chem Abstr 118, 22251qGoogle Scholar
  20. Kotzyba-Hibert F, Kapfer I, Goeldner M (1995) Recent trends in photoaffinity labeling. Angew Chem Int Ed Engl 34:1296–1312CrossRefGoogle Scholar
  21. Lansdell S J, Schmitt B, Betz H, Sattelle DB, Millar NS (1997) Temperature-sensitive expression of Drosophila neuronal nicotinic acetylcholine receptors. J Neurochem 68:1812–1819PubMedCrossRefGoogle Scholar
  22. Lapied B, Corronc HL, Hue B (1990) Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res 533:132–136PubMedCrossRefGoogle Scholar
  23. Latli B, Casida JE (1992) [3H]Imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor. J Labelled Compd Radiopharm 31:609–613Google Scholar
  24. Latli B, Than C, Morimoto H, Williams PG, Casida JE (1996) [6-Chloro-3-pyridylmethyl-[3H]neonicotinoids as high-affinity radioligands for the nicotinic acetylcholine receptor: preparation using NaB3H4 and LiB3H4. J Labelled Comp Radiopharm 38:971–978CrossRefGoogle Scholar
  25. Latli B, Tomizawa M, Casida JE (1997) Synthesis of a novel [125]neonicotinoid photoaffinity probe for the Drosophila nicotinic acetylcholine receptor. Bioconjugate Chem 8:7–14CrossRefGoogle Scholar
  26. Lindstrom J (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 15:193–222PubMedCrossRefGoogle Scholar
  27. Liu M-Y, Casida JE (1993) High affinity binding of [3H] imidacloprid in the insect acetylcholine receptor. Pestic Biochem Physiol 46:40–46CrossRefGoogle Scholar
  28. Liu M-Y, Lanford J, Casida JE (1993) Relevance of [3H] imidacloprid binding site in house fly head acetylcholine receptor to insecticidal activity of 2-nitromethylene-and 2-nitroimino-imidazolidines. Pestic Biochem Physiol 46:200–206CrossRefGoogle Scholar
  29. Liu M-Y, Latli B, Casida JE (1994) Nitomethyleneimidazolidine radioligand ([3H]NMI): high affinity and cooperative binding for house fly acetylcholine receptor. Pestic Biochem Physiol 50:171–182CrossRefGoogle Scholar
  30. Liu M-Y, Latli B, Casida JE (1995) Imidacloprid binding site in Musca nicotinic acetylcholine receptor: interactions with physostigmine and a variety of nicotinic agonists with chloropyridyl and chlorothiazolyl substituents. Pestic Biochem Physiol 52:170–181CrossRefGoogle Scholar
  31. March CS, Cattell KJ, Donnellan JF (1982) Pharmacologicaal characteristics of a putative nicotinic acetylcholine receptor from Musca domestica. In: Evered D, O’Connor M, Whelan J (eds) Ciba Foundation Symposium 88: Neuropharmacology of Insects. Pitman, London, pp 118–136Google Scholar
  32. Marshall J, Buckingham SD, Shingai R, Lunt GG, Goosey MW, Darlison MG, Sattelle DB, Barnard EA (1990) Sequence and functional expression of a single a subunit of an insect nicotinic acetylcholine receptor. EMBO J 9:4391–4398PubMedGoogle Scholar
  33. Matsuo H, Tomizawa M, Yamamoto I (1998) Structure-activity relationships of acyclic nicotinoids and neonicotinoids for insect nicotinic acetylcholine receptor/ion channel complex. Arch Insect Biochem Physiol 37:17–23CrossRefGoogle Scholar
  34. Mebs D, Narita K, Iwanaga S, Samejima Y, Lee CY (1971) Amino acid sequence of α bungarotoxin from the venom of Bungarus multicinctus. Biochem Biophys Res Commun 44:711–716PubMedCrossRefGoogle Scholar
  35. Minamida I, Iwanaga K, Tabuchi T, Uneme H, Dantsuji H, Okauchi T (1993) Synthesis and insecticidal activity of acyclic nitroethene compounds containing a 3-pyridyl-methylamino group. J Pestic Sci 18:31–40CrossRefGoogle Scholar
  36. Moriya K, Shibuya K, Hattori Y, Tsuboi S, Shiokawa K, Kagabu S (1992) l-(6-Chloronicotinyl)-2-nitroimino-imidazolidines and related compounds as potential new insecticides. Biosci Biotechnol Biochem 56:364–365CrossRefGoogle Scholar
  37. Nishimura K, Kanda Y, Okazawa A, Ueno T (1994) Relationship between insecticidal and neurophysiological activities of imidacloprid and related compounds. Pestic Biochem Physiol 50:51–59CrossRefGoogle Scholar
  38. Ohana B, Gershoni JM (1990) Comparison of the toxin binding sites of the nicotinic acetylcholine receptor from Drosophila to human. Biochemistry 29:6409–6415PubMedCrossRefGoogle Scholar
  39. Papke RL (1993) The kinetic properties of neuronal nicotinic receptors: genetic basis of functional diversity. Prog Neurobiol 41:509–531PubMedCrossRefGoogle Scholar
  40. Pedersen SE, Cohen JB (1990) d-Tubocurarine binding sites are located at α-γ and α-δ subunit interfaces of the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 87:2785–2789PubMedCrossRefGoogle Scholar
  41. Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443PubMedCrossRefGoogle Scholar
  42. Sattelle DB, Breer H (1985) Purification by affinity-chromatography of a nicotinic acetylcholine receptor from the CNS of the cockroach Periplaneta americana. Comp Biochem Physiol [C] 82:349–352CrossRefGoogle Scholar
  43. Sawruk E, Schloss P, Betz H, Schmitt B (1990a) Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated α-subunit. EMBO J 9:2671–2677PubMedGoogle Scholar
  44. Sawruk E, Udri C, Betz H, Schmitt B (1990b) SBD, a novel structural subunit of the Drosophila nicotinic acetylcholine receptor, shares its genomic localization with two α-subunits. FEBS Lett 273:177–181PubMedCrossRefGoogle Scholar
  45. Schloss P, Hermans-Borgmeyer I, Betz H, Gundelfinger ED (1988) Neuronal acetylcholine receptors in Drosophila: the ARD protein is a component of a high-affinity α-bungarotoxin binding complex. EMBO J 7:2889–2894PubMedGoogle Scholar
  46. Schloss P, Betz H, Schröder C, Gundelfinger ED (1991) Neuronal nicotinic acetylcholine receptors in Drosophila: antibodies against an α-like and a non-a-subunit recognize the same high-affinity α-bungarotoxin binding complex. J Neurochem 57:1556–1562PubMedCrossRefGoogle Scholar
  47. Schloss P, Mayser W, Gundelfinger ED, Betz H (1992) Cross-linking of 125I-α-bungarotoxin to Drosophila head membranes identifies a 42 kDa toxin binding polypeptide. Neurosci Lett 145:63–66PubMedCrossRefGoogle Scholar
  48. Schuster R, Phannavong B, Schröder C, Gundelfinger ED (1993) Immunohistochemical localization of a ligand-binding and a structural subunit of nicotinic acetylcholine receptors in the central nervous system of Drosophila melanogaster. J Comp Neurol 335:149–162PubMedCrossRefGoogle Scholar
  49. Sgard F, Obosi LA, King LA, Windass JD (1993) ALS and SAD-like nicotinic acetylcholine receptor subunit genes are widely distributed in insects. Insect Mol Biol 2:215–223PubMedCrossRefGoogle Scholar
  50. Takahashi H, Mitsui J, Takakusa N, Matsuda M, Yoneda H, Suzuki J, Ishimitsu K, Kishimoto T (1992) NI-25, a new type of systemic and broad spectrum insecticide. Brighton Crop Prot Conf Pests Dis 1:89–96Google Scholar
  51. Tomizawa M (1994) Structure-activity relationships of nicotinoids and the related compounds. J Pestic Sci 19:S229-S240Google Scholar
  52. Tomizawa M, Casida JE (1997) [125I]Azidonicotinoid photoaffinity labeling of insecticide-binding subunit of Drosophila nicotinic acetylcholine receptor. Neurosci Lett 237:61–64PubMedCrossRefGoogle Scholar
  53. Tomizawa M, Yamamoto I (1992) Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. J Pestic Sci 17:231–236CrossRefGoogle Scholar
  54. Tomizawa M, Yamamoto I (1993) Structure-activity relationships of nicotinoids and imidacloprid analogs. J Pestic Sci 18:91–98CrossRefGoogle Scholar
  55. Tomizawa M, Otsuka H, Miyamoto T, Eldefrawi ME, Yamamoto I (1995a) Pharmacological characteristics of insect nicotinic acetylcholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids. J Pestic Sci 20:57–64CrossRefGoogle Scholar
  56. Tomizawa M, Otsuka H, Miyamoto T, Yamamoto I (1995b) Pharmacological effects of imidacloprid and its related compounds on the nicotinic acetylcholine receptor with its ion channel from the Torpedo electric organ. J Pestic Sci 20:49–56CrossRefGoogle Scholar
  57. Tomizawa M, Latli B, Casida JE (1996) Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors. J Neurochem 67:1669–1676PubMedCrossRefGoogle Scholar
  58. Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43PubMedCrossRefGoogle Scholar
  59. Yamamoto I, Yabuta G, Tomizawa M, Saito T, Miyamoto T, Kagabu S (1995) Molecular mechanism for selective toxicity ofnicotinoids and neonicotinoids. J Pestic Sci 20:33–40CrossRefGoogle Scholar
  60. Yamamoto I, Tomizawa M, Saito T, Miyamoto T, Walcott EC, Sumikawa K (1998) Structural factors contributing to insecticidal and selective actions of neonicotinoids. Arch Insect Biochem Physiol 37:24–32PubMedCrossRefGoogle Scholar
  61. Zwart R, Oortgiesen M, Vijverberg HPM (1994) Nitromethylene heterocycles: selective agonists of nicotinic receptors in locust neurons compared to mouse N1E-115 and BC3Hl cells. Pestic Biochem Physiol 48:202–213CrossRefGoogle Scholar

Copyright information

© Springer Japan 1999

Authors and Affiliations

  • Motohiro Tomizawa
    • 1
  • Bachir Latli
    • 1
  • John E. Casida
    • 1
  1. 1.Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations