Skip to main content

Shear stress and the IVUS derived vessel wall thickness

  • Chapter
Vascular Ultrasound

Summary

The role of shear stress in atherosclerosis has been well documented in vitro. In this chapter a novel technique and several applications will be described. The technique consists of a combination of 3D imaging of blood vessels and Computational Fluid Dynamics. The 3D imaging techniques consist either of 3D-IVUS or a combination of 3D IVUS and Angiography (‘ANGUS’). In the applications of these techniques it will be demonstrated that shear stress pays a role in the prediction of plaque location in in-stent restenosis, in vascular remodeling after balloon angioplasty, and in plaque location in primary atherosclerosis. Attempts to locally increase shear stress by a newly developed flow divider indicate that shear stress accounts for 50% of restenosis.

In conclusion, this chapter describes several new techniques to estimate shear stress and describes the role of this parameter in several conditions, both in humans and in animals in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shaaban AM and Duerinckx AJ (2000) Wall shear stress and early atherosclerosis: a review. AJR Am J Roentgenol 174: 1657–1665.

    CAS  PubMed  Google Scholar 

  2. Zarins CK, Giddens DP, Bharadvaj BK, et al. (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53: 502–514.

    Article  CAS  PubMed  Google Scholar 

  3. Gnasso A, Irace C, Carallo C, et al. (1997) In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 28: 993–998.

    Article  CAS  PubMed  Google Scholar 

  4. Brands P, Hoeks A, Hofstra L, et al. (1995) A noninvasive method to estimate wall shear rate using ultrasound. Ultrasound in medicine and biology 21: 171–185.

    Article  CAS  PubMed  Google Scholar 

  5. Komet L, Lambregts J, Hoeks AP, et al. (1998) Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 18: 1877–1884.

    Article  Google Scholar 

  6. Slager CJ, Wentzel JJ, Schuurbiers JC, et al. (2000) True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102: 511–516.

    Article  CAS  PubMed  Google Scholar 

  7. Laban M, Oomen J, Slager C, et al. (1995) ANGUS: A new Approach to Three-Dimensional Reconstruction of Coronary Vessels by Combined Use of Angiography and Intravascular Ultrasound. IEEE, Computers in Cardiology 95CH35874: 325–328.

    Google Scholar 

  8. Li W, Bosch J, Zhong Y, et al. (1993) Image segmentation and 3-D reconstruction of intravascular ultrasound images. In: Acoustical Imaging, ed. Y. Wei and B. Gu. Plenum Press, New York: 489–496.

    Chapter  Google Scholar 

  9. Wentzel JJ, Whelan MD, van der Giessen WJ, et al. (2000) Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech 33: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  10. Cuvelier C, Segal A, and van Steenhoven A, Finite Element Methods and Navier-Stokes equations. 1986, Dordrecht: Reidel, 1986.

    Book  Google Scholar 

  11. Zarins CK, Zatina MA, Giddens DP, et al. (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis J Vasc Surg 5: 413–420.

    CAS  PubMed  Google Scholar 

  12. Malek AM, Alper SL, and Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. Jama 282: 2035–2042.

    Article  CAS  PubMed  Google Scholar 

  13. Bagshaw RJ, Cox RH, Karreman G, et al. (1986) Baroreceptor control of pressure-flow relationships during hypoxemia J. Appl. Physiol. 60: 166–175.

    CAS  PubMed  Google Scholar 

  14. van de Vosse FN, van Steenhoven AA, segal A, et al. (1989) A finite element analysis of the steady laminar entrance flow in a 90 curved tube Int. J. Num. Method in Fluids 9: 275–287.

    Article  Google Scholar 

  15. Caro CG, Fitz-Gerald JM, and Schroter RC (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 177: 109–159.

    Article  CAS  PubMed  Google Scholar 

  16. Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22: 165–197.

    Article  CAS  PubMed  Google Scholar 

  17. Giddens DP, Zarins CK, and Glagov S (1993) The role of fluid mechanics in the localization and detection of atherosclerosis J Biomech Eng 115: 588–594.

    Article  CAS  PubMed  Google Scholar 

  18. Sabbah HN, Khaja F, Hawkins ET, et al. (1986) Relation of atherosclerosis to arterial wall shear in the left anterior descending coronary artery of man Am Heart J 112: 453–458.

    Article  CAS  PubMed  Google Scholar 

  19. Friedman MH, Deters OJ, Bargeron CB, et al. (1986) Shear-dependent thickening of the human arterial intima. Atherosclerosis 60: 161–171.

    Article  CAS  PubMed  Google Scholar 

  20. Deng X, Matois Y, How T, et al. (1995) Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries [published erratum appears in J Vasc Surg 1995 Dec;22(6):648] J Vasc Surg 21: 135–145.

    Article  CAS  PubMed  Google Scholar 

  21. Waters CM (1996) Flow-induced modulation of the permeability of endothelial cells cultured on microcarrier beads. J Cell Physiol 168: 403–411.

    Article  CAS  PubMed  Google Scholar 

  22. Jo H, Dull RO, Hollis TM, et al. (1991) Endothelial albumin permeability is shear dependent, time dependent, and reversible Am J Physiol 260: H1992–1996.

    CAS  PubMed  Google Scholar 

  23. Gibson CM, Diaz L, Kandarpa K, et al. (1993) Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 13: 310–315.

    Article  CAS  PubMed  Google Scholar 

  24. Friedman MH, Bargeron CB, Deters OJ, et al. (1987) Correlation between wall shear and intimal thiekness at a coronary artery branch. Atherosclerosis 68: 27–33.

    Article  CAS  PubMed  Google Scholar 

  25. Friedman MH, Bargeron CB, Duncan DD, et al. (1992) Effects of arterial compliance and non-Newtonian rheologyon correlations between intimal thickness and wall shear. J Biomech Eng 114: 317–320.

    Article  CAS  PubMed  Google Scholar 

  26. Moore J, Jr., Xu C, Glagov S, et al. (1994) Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110: 225–240.

    Article  CAS  PubMed  Google Scholar 

  27. Krams R, Wentzel J, Oomen J, et al. (1997) Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 17: 2061–2065.

    Article  CAS  PubMed  Google Scholar 

  28. Kamiya A and Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239: H14–21.

    CAS  PubMed  Google Scholar 

  29. Trone F, Wassef M, Esposito B, et al. (1996) Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 16: 1256–1262.

    Article  Google Scholar 

  30. Glagov S, Weisenberg E, Zarins CK, et al. (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316: 1371–1375.

    Article  CAS  PubMed  Google Scholar 

  31. Mintz GS, Kent KM, Pichard AD, et al. (1997) Intravascular ultrasound insights into mechanisms of stenosis formation and restenosis Cardiol Clin 15: 17–29.

    Article  CAS  PubMed  Google Scholar 

  32. Post MJ, Borst C, and Kuntz RE (1994) The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig [see comments]. Circulation 89: 2816–2821.

    Article  CAS  PubMed  Google Scholar 

  33. Wentzel JJ, Kloet J, Andhyiswara I, et al. (2001) Shear stress and wall stress regulation of vascular remodeling after balloon angioplasty: effect of matrix metalloproteinase inhibition. Circulation,2001,3:104(1):91–96.

    Article  CAS  PubMed  Google Scholar 

  34. Dollery CM, McEwan JR, and Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77: 863–868.

    Article  CAS  PubMed  Google Scholar 

  35. Abbruzzese TA, Guzman RJ, Martin RL, et al. (1998) Matrix metalloproteinase inhibition limits arterial enlargements in a rodent arteriovenous fistula model Surgery 124: 328–334; discussion 334-325.

    Article  CAS  PubMed  Google Scholar 

  36. Bassiouny HS, Song RH, Hong XF, et al. (1998) Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 98: 157–163.

    Article  CAS  PubMed  Google Scholar 

  37. Zempo N, Kenagy RD, Au YP, et al. (1994) Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vasc Surg 20: 209–217.

    Article  CAS  PubMed  Google Scholar 

  38. Meng X, Mavromatis K, and Galis LB (1999) Mechanical stretching of human saphenous vein grafts induces expression and activation of matrix-degrading enzymes associated with vascular tissue injury and repair [In Process Citation] Exp Mol Pathol 66: 227–237.

    Article  CAS  PubMed  Google Scholar 

  39. Zempo N, Koyama N, Kenagy RD, et al. (1996) Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler Thromb Vasc Biol 16: 28–33.

    Article  CAS  PubMed  Google Scholar 

  40. Bendeck MP, Irvin C, and Reidy MA (1996) Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res 78: 38–43.

    Article  CAS  PubMed  Google Scholar 

  41. de Smet BJGL (1998) A new Paradigm in Restenosis: Morphometric and Molecular Characteristics. dissertation.

    Google Scholar 

  42. Kohler TR, Kirkman TR, Kraiss LW, et al. (1991) Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts Circ Res 69: 1557–1565.

    Article  CAS  PubMed  Google Scholar 

  43. Salam T, Lumsden A, Suggs W, et al. (1996) low shear stress prornotes intimal hyperplasia thickening. Journal of vascular investigation 2: 12–22.

    Google Scholar 

  44. Mattsson EJ, Kohler TR, Vergel SM, et al. (1997) Increased blood flow induces regression of intimal hyperplasia. Arterioscler Thromb Vasc Biol 17: 2245–2249.

    Google Scholar 

  45. Ethier CR, Steinman DA, Zhang X, et al. (1998) Flow waveform effects on end-to-side anastomotic flow patterns. J Biomech 31: 609–617.

    Article  CAS  PubMed  Google Scholar 

  46. Liu SQ (1998) Prevention of focal intimal hyperplasia in rat vein grafts by using a tissue engineering approach Atherosclerosis 140: 365–377.

    Article  CAS  PubMed  Google Scholar 

  47. Marano G, Palazzesi S, Vergari A, et al. (1999) Protection by shear stress from collar-induced intimal thickening: role of nitric oxide. Arterioscler Thromb Vasc Biol 19: 2609–2614.

    Article  CAS  PubMed  Google Scholar 

  48. Rectenwald JE, Moldawer LL, Huber TS, et al. (2000) Direct evidence for cytokine involvement in neointimal hyperplasia. Circulation 102: 1697–1702.

    Article  CAS  PubMed  Google Scholar 

  49. Song RH, Kocharyan HK, Fortunato JE, et al. (2000) Increased flow and shear stress enhance in vivo transforming growth factor-beta1 after experimental arterial injury. Arterioscler Thromb Vasc Biol 20: 923–930.

    Article  CAS  PubMed  Google Scholar 

  50. Sprague EA, Luo J, and Palmaz JC (1997) Human aortic endothelial cell migration onto stent surfaces under static and flow conditions J Vasc Interv Radiol 8: 83–92.

    Article  CAS  PubMed  Google Scholar 

  51. Asahara T, Bauters C, Pastore C, et al. (1995) Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery [see comments] Circulation 91: 2793–2801.

    Article  CAS  PubMed  Google Scholar 

  52. Chen FE, Huang DB, Chen YQ, et al. (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391: 410–413.

    Article  CAS  PubMed  Google Scholar 

  53. Wentzel JJ, Krams R, Schuurbiers JC, et al. (2001) Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries Circulation 103: 1740–1745.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Wentzel, J.J. et al. (2003). Shear stress and the IVUS derived vessel wall thickness. In: Saijo, Y., van der Steen, A.F.W. (eds) Vascular Ultrasound. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67871-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67871-7_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68003-1

  • Online ISBN: 978-4-431-67871-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics