Skip to main content
  • 277 Accesses

Abstract

Microangiography is an essential method of evaluating blood circulation in several tissues. Blood circulation in the bone or skin is frequently evaluated in the fields of orthopedic and plastic surgery. The following procedure of aortography is used to evaluate blood circulation in animal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitten M.B. (1928) A review of the technical methods of demonstrating the circulation of the heart. A modification of the celluloid and corrosion technic. Arch Int Med 42:846–864

    Google Scholar 

  2. Narat J.K., Loef J.A., Narat M. (1936) On the preparation of multicolored corrosion specimens. Anat Rec 64:155–160

    Google Scholar 

  3. Sempuku T., Tamai S., Mizumoto S., Yajima H. (1993) Vascularized tail bone grafts in rats. Plast Reconstr Surg 91:502–510

    PubMed  CAS  Google Scholar 

  4. Batson O.V. (1935) A new material for corrosion preparations. Science 81:519–520

    PubMed  CAS  Google Scholar 

  5. Batson O.V. (1939) Latex emulsions in human vascular preparations. Science 90:518–520

    PubMed  CAS  Google Scholar 

  6. Batson O.V. (1955) Corrosion specimens prepared with a new material. Anat Rec 121:425

    Google Scholar 

  7. Lametschwandtner A., Lametschwandtner U., Weiger T. (1990) Scanning electron microscopy of vascular corrosion casts-technique and applications: update review. Scanning Microsc 4:889–941

    PubMed  CAS  Google Scholar 

  8. Burger P.C., Chandler D.B., Gordon K. (1984) Scanning electron microscopy of vascular casts. J Elect Microsc Tech 1:341–348

    Google Scholar 

  9. Hirsch C., Spalteholz W. (1907) Coronararterien und Herzmuskel. Anatomische und experimentelle Untersuchungen. Deutsche Med Wchnschr 1:790–795

    Google Scholar 

  10. Gross L. (1921) The blood supply to the heart in its anatomical and clinical aspects. Paul B Hoeber, New York, pp 1–10

    Google Scholar 

  11. Wolfe K. (1956) Plastic-embedded hearts-Cleared and corroded specimens. AMA Arch Pathol 61:153–158

    PubMed  CAS  Google Scholar 

  12. Sempuku T., Tamai S., Mizumoto S., Yajima H. (1993) Vascularized tail bone grafts in rats. Plast Reconstr Surg 91:502–510

    PubMed  CAS  Google Scholar 

  13. Scapinelli R. (1997) Vascular anatomy of the human cruciate ligaments and surrounding structures. Clin Anat 10:151–162

    PubMed  CAS  Google Scholar 

  14. Caffesse R.G., Castelli W.A., Nasjleti C.E. (1981) Vascular response to modified Widman flap surgery in monkeys. J Periodontol 52:1–7

    Google Scholar 

  15. Spalteholz W. (1924) Die Arterien der Herzwand. Anatomische Untersuchungen an Menschen-und Tierherzen. S Hirzel, Leipzig, pp 13–18

    Google Scholar 

  16. Milch R.A., Rall D.P., Tobie J.E. (1957) Bone localization of the tetracyclines. J Natl Cancer Inst 19:87–93

    PubMed  CAS  Google Scholar 

  17. Milch R.A., Rall D.P., Tobie J.E. (1958) Fluorescence of tetracycline antibiotics in bone. J Bone Joint Surg 40A:897–910

    CAS  Google Scholar 

  18. Ibsen K.H., Urist M.R. (1964) The biochemistry and the physiology of the tetracyclines: with special reference to mineralized tissues. Clin Orthop 32:143–169

    PubMed  CAS  Google Scholar 

  19. Frost H.M., Villanueva A.R., Roth H. (1960) Tetracycline staining of newly forming bone and mineralizing cartilage in vivo. Stain Technol 35:135–138

    PubMed  CAS  Google Scholar 

  20. Frost H.M., Villanueva A.R., Roth H. (1960) Measurement of bone formation in a 57 year old man by means of tetracyclines. Henry Ford Hosp Med Bull 8:238–254

    Google Scholar 

  21. Tapp E. (1966) Tetracycline labelling methods of measuring the growth of bones in the rat. J Bone Joint Surg 48B:517–525

    CAS  Google Scholar 

  22. Raman A. (1969) Appositional growth rate in rat bones using the tetracycline labelling method.Acta Orthop Scand 40:193–197

    PubMed  CAS  Google Scholar 

  23. Frost H.M. (1969) Tetracycline-based histological analysis of bone remodeling. Calc Tiss Res 3:211-237

    Google Scholar 

  24. Villanueva A.R. (1974) A bone stain for osteoid seams in fresh, unembedded, mineralized bone. Stain Technol 49:1–8s

    PubMed  CAS  Google Scholar 

  25. Mathews C.H.E., Mehr I. (1979) Staining and processing bone specimens for simultaneous tetracycline-osteoid seam assessment and histomorphometric quantitative analysis. J Histotechnol 2:23–24

    Google Scholar 

  26. Konno T., Takahashi H. (1983) Preparation of undecalcified bone sections. In: Takahashi H. (ed) Handbook of bone morphometry. Nishimura, Niigata, Japan, pp 28–33

    Google Scholar 

  27. Villanueva A.R. (1983) Preparation and staining of mineralized sections of bone. In: Takahashi H. (ed) Handbook of bone morphometry. Nishimura, Niigata, Japan, pp 45–55

    Google Scholar 

  28. Jee W.S.S., Inoue J., Jee K.W., Haba T. (1983) Histomorphometric assay of the growing long bone. In: Takahashi H. (ed) Handbook of bone morphometry. Nishimura, Niigata, Japan, pp 101–124

    Google Scholar 

  29. Ohgushi H., Okumura M. (1990) Osteogenic capacity of rat and human marrow cells in porous ceramics: experiments in athymic (nude) mice. Acta Orthop Scand 61:431–434

    PubMed  CAS  Google Scholar 

  30. Okumura M., Ohgushi H., Tamai S. (1991) Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 12:411–416

    PubMed  CAS  Google Scholar 

  31. Okumura M., Ohgushi H., Tamai S., Shors E.C. (1991) Primary bone formation in porous hydroxyapatite ceramic: a light and scanning electron microscopie study. Cells Mater 1:29–34

    Google Scholar 

  32. Okumura M, van Blitterswijk C.A., Koerten H.K., Ohgushi H., Tamai S. (1990) Experimental study of vascularized hydroxyapatite implants combined with rat bone marrow cells: a preliminary report. In: Hulbert J.E., Hulbert S.F. (eds) Bioceramics. Vol 3. Rose-Hulman Institute of Technology, Terre Haute, IN, pp 309–317

    Google Scholar 

  33. Okumura M., Ohgushi H., Takakura Y., van Blitterswijk C.A., Koerten H.K. (1992) Analysis of primary bone formation in porous alumina: a fluorescence and scanning electron microscopic study of marrow cell induced osteogenesis. Biomed Mater Eng 2:191–201

    PubMed  CAS  Google Scholar 

  34. Sempuku T., Ohgushi H., Okumura M., Tamai S. (1996) Osteogenic potential of allogeneic rat marrow cells in porous hydroxyapatite ceramics: a histological study. J Orthop Res 14:907–913

    PubMed  CAS  Google Scholar 

  35. Minami A., Vsui M., Ogino T., Minami M. (1986) Simultaneous reconstruction of bone and skin defects by free fibular graft with a skin flap. Microsurgery 7:38–45

    PubMed  CAS  Google Scholar 

  36. Minami A., Ogino T., Sakuma T., Vsui M. (1987) Free vascularized fibular grafts in the treatment of congenital pseudarthrosis of the tibia. Microsurgery 8:111–116

    PubMed  CAS  Google Scholar 

  37. Kaneda K., Kurakami C., Minami A. (1988) Free vascularized fibular graft in the treatment of kyphosis. Spine 13:1273–1277

    PubMed  CAS  Google Scholar 

  38. Minami A., Kaneda K., Itoga H., Vsui M. (1989) Free vascularized fibular grafts. J Reconstr Microsurg 5:37–43

    PubMed  CAS  Google Scholar 

  39. Minami A., Ogino T., Itoga H. (1989) Vascularized iliac osteocutaneous flap based on the deep circumflex iliac vessels-Experience of 13 cases. Microsurgery 10:99–102

    PubMed  CAS  Google Scholar 

  40. Minami A., Itoga H., Suzuki K. (1990) Reverse-flow vascularized fibular graft: A new method. Microsurgery 11:278–281

    PubMed  CAS  Google Scholar 

  41. Minami A., Kaneda K., Itoga H. (1992) Treatment of infected segmental defect of long bone with vascularized bone transfer. J Reconstr Microsurg 8:75–82

    PubMed  CAS  Google Scholar 

  42. Minami A., Kimura T., Matsumoto O., Suzuki K. (1993) Fracture through united vascularized bone grafts. J Reconstr Microsurg 9:227–232

    PubMed  CAS  Google Scholar 

  43. Minami A., Kutsumi K., Takeda N., Kaneda K. (1995) Vascularized fibular graft for bone reconstruction of the extremities after tumor resection in limb-saving procedures. Microsurgery 16:56–64

    PubMed  CAS  Google Scholar 

  44. Minami A., Kaneda K., Satoh S., Abumi K., Kutsumi K. (1997) Free vascularized fibular strut graft for anterior spinal fusion. J Bone Joint Surg 79B:43–47

    Google Scholar 

  45. Kasashima T., Minami A., Kutsumi K. (1998) Late fracture of vascularized fibular grafts. Microsurgery 18:337–343

    PubMed  CAS  Google Scholar 

  46. Yoshimura M., Shimamura K., Iwai Y., Yamauchi S., Veno T. (1983) Free vascularized fibular transplant. A new method for monitoring circulation of the grafted fibula. J Bone Joint Surg 65A:1295–1301

    Google Scholar 

  47. Lau R.S.F., Leung P.C. (1982) Bone graft viability in vascularized bone graft transfer. Br J Radiol 55:325–329

    PubMed  CAS  Google Scholar 

  48. Lisbona R., Rennie W.R.J., Daniel R.K. (1980) Radionuclide evaluation of free vascularized bone graft viability. Am J Radiol 134:387–388

    CAS  Google Scholar 

  49. Frame J.W., Edmondson H.D., O’Kane M.M. (1983) A radio isotope study of the healing of mandibular bone grafts in patients. Br J Oral Surg 21:277–289

    Google Scholar 

  50. Zimberg E.M., Wood M.B., Brown M.L. (1985) Vascularized bone transfer: Evaluation of viability by postoperative bone scan. J Reconstr Microsurg 2:13–19

    Google Scholar 

  51. Breggren A., Weiland A.J., Ostrup L.T. (1982) Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-vascularized periosteal grafts. J Bone Joint Surg 64A:799–809

    Google Scholar 

  52. Itoh K., Minami A., Sakuma T., Furudate M. (1989) The use of three-phase bone imaging in vascularized fibular and iliac bone grafts. Clin Nucl Med 14:494–500

    PubMed  CAS  Google Scholar 

  53. Subtanian G., McAfee J.G. (1971) A new complex for 99m Tc for skeletal imaging. Radiology 99:192–196

    Google Scholar 

  54. Nutton R.W., Fitzgerald R.H., Kelly P.J. (1985) Early detection bone-imaging as an indicator of osseous blood flowand factors affecting the uptake of 99m-Tc hydroxy methylene diphosphonate in healing bone. J Bone Joint Surg 67A:763–770

    Google Scholar 

  55. Lalonde D.H., Williams H.B., Rosenthall L., Viloria J.B. (1984) Circulation, bone scans, and tetracycline labeling in microvascular and vascular bundle implanted rib grafts. Ann Plast Surg 5:366–374

    Google Scholar 

  56. Woldarski K.H., Reddi A.H. (1986) Alkaline phosphatase as a marker of osteo inductive cells. Calcif Tissue Int 39:382–385

    Google Scholar 

  57. Yoshikawa T., Ohgushi H., Okumura M., Tamai S., Dohi Y., Moriyama T. (1992) Biochemical and histological sequences of membranous ossification in ectopic site. Calcif Tissue Int 50:184–188

    PubMed  CAS  Google Scholar 

  58. Price P.A., Parthemore J.G., Detos L.J. (1980) New biochemical marker for bone metabolism. J Clin Invest 66:878–883

    PubMed  CAS  Google Scholar 

  59. Price P.A., Lothringer J.W., Baukol S.A., Reddi A.H. (1981) Developmental appearance of the vitamin K-dependent protein of bone during decalcification: Analysis of mineralizing tissues in human. J Biol Chem 256:3781–3784

    PubMed  CAS  Google Scholar 

  60. Ohgushi H., Dohi Y., Tamai S., Tabata S. (1993) Osteogenic differentiation of marrow stromal stem cells in porous hydroxyapatite ceramics. J Biomed Mat Res 27:1401–1407

    CAS  Google Scholar 

  61. Reddi A.H., Sullivan N.S. (1980) Matrix-induced endochondral bone differentiation: Influence of hypophysectomy, growth hormone, and thyroid-stimulating hormone. Endocrinology 107:1291–1299

    PubMed  CAS  Google Scholar 

  62. Dohi Y., Ohgushi H., Tabata S., Yoshikawa T., Dohi K., Moriyama T. (1992) Osteogenesis associated with bone Gla protein gene expression in diffusion chambers by bone marrow cells with demineralized bone matrix. J Bone Min Res 7:1173–1180

    CAS  Google Scholar 

  63. Akahane M., Ohgushi H., Yoshikawa T., Sempuku T., Tamai S., Tabata S., Dohi Y. (1999) Osteogenic phenotype expression of allogenic rat marrow cells in porous hydroxyapatite ceramics J Bone Min Res 14:561–568

    CAS  Google Scholar 

  64. Ohgushi H., Okumura M., Yoshikawa T., Tamai S., Tabata S., Dohi Y. (1992) Regulation of bone development andthe relationship to bioactivity: Osteoblastic phenotype expression of marrow stromal stem cells on the surface of bioactive materials. In: Ducheyne P., Kokubo T., Van Blitterswijk C.A. (eds) Bone-bonding biomaterials. Reed Healthcare Communications Publishers, Leiderdorp, The Netherlands, pp 47–56

    Google Scholar 

  65. Watson J.D., Gilman M., Witkowski J., Zoller M. (1992) Recombinant DNA. In: Scientific American Books, W.H. Freeman and Company, New York

    Google Scholar 

  66. Ishida H., Tamai S., Yajima H., Inoue K., Ohgushi H., Dohi Y. (1996) Histologic and biochemical analysis of osteogenic capacity of vascularized periosteum. Plastic Reconst Surg 97:512–518

    CAS  Google Scholar 

  67. Ohgushi H., Goldberg V.M., Caplan A.I. (1989) Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 7:568–578

    PubMed  CAS  Google Scholar 

  68. Okumura M., Ohgushi H., Tamai S. (1991) Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 12:411–416

    PubMed  CAS  Google Scholar 

  69. Ohgushi H., Okumura M., Tamai S., Shors E.C. (1990) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: A comparative histomorphometric study of ectopic bone formation. J Biomed Mat Res 24:1563–1570

    CAS  Google Scholar 

  70. Sempuku T., Ohgushi H., Okumura M., Tamai S. (1996) Osteogenic potential of allogeneic rat marrow cells in porous hydroxyapatite ceramics: A histological study. J Orthop Res 14:907–913

    PubMed  CAS  Google Scholar 

  71. Inoue K., Ohgushi H., Yoshikawa T., Sempuku T., Tamai S., Dohi Y. (1997) The effect of aging on bone formation in porous hydroxyapatite. Biochemical and histological analysis. J Bone Min Res 12:989–994

    CAS  Google Scholar 

  72. Inoue K., Ohgushi H., Toshikawa T., Okumura M., Tamai S., Dohi Y. (1992) Osteogenic activity of marrow/hydroxyapatite composite (Quantitative analysis of bone formation). In: Yamamuro T., Kokubo T., Nakamura T. (eds) Bioceramics. Vol. 5. Kobunshi Kankokai, Kyoto, Japan, pp 125–130

    Google Scholar 

  73. Ohgushi H., Okumura M. (1990) Osteogenic capacity of rat and human marrow cells in porous ceramics. Experiments in athymic (nude) mice. Acta Orthop Scand 61:431–434

    PubMed  CAS  Google Scholar 

  74. Yoshikawa T., Ohgushi H., Uemura T., Nakajima H., Ichijima K., Tamai S., Tateisi T. (1998) Human marrow cells-derived cultured bone in porous ceramics. Biomed Mater Eng 8:311–320

    PubMed  CAS  Google Scholar 

  75. Rudolph A.M., Heymann M.A. (1967) The circulation of the fetus in utero. Circ Res 21:163–184

    PubMed  CAS  Google Scholar 

  76. Axelsson A., Angelborg C., Larsen H.C. (1983) The microsphere surface technique for evaluation of cochlear vessels and circulation. A preliminary report. Acta Otolaryngolica 95:297–305

    CAS  Google Scholar 

  77. Angelborg C., Slepecky N., Larsen H.C., Soderberg L. (1987) Colored micro spheres for blood flow determinations twice in the same animal. Hear Res 27:265–269

    PubMed  CAS  Google Scholar 

  78. Hamaji M., Miyata M., Kawashima Y. (1985) A study of the vascular arrangement in the rat adrenal gland using nonradioactive micro spheres. Cell Tissue Res 240:277–280

    PubMed  CAS  Google Scholar 

  79. Shell W., Kligerman M., Chang A-L., See J.I., Meerbaum S., Corday E. (1985) Measurement of myocardial blood flow with nonradioactive microspheres (abstract). Circulation 72 (Suppl 11, IIIJ):III–191

    Google Scholar 

  80. Hale S.L., Alker K.J., Kloner A.A. (1988) Evaluation of nonradioactive colored microspheres for measurement of regional myocardial blood flow in dogs. Circulation 78:42–34

    Google Scholar 

  81. Pang C.Y., Neligan P., Nakatsuka T. (1984) Assessment of microsphere technique for measurement of capillary blood flow in random skin flaps in pigs. Plast Reconstr Surg 74:513–521

    PubMed  CAS  Google Scholar 

  82. Neutze J.M., Wyler F., Rudolph A.M. (1968) Use of radioactive microspheres to assess distribution of cardiac output in rabbits. Am J Physiol 215:486–495

    Google Scholar 

  83. Batrum R.J., Berkowitz D.M., Hollenberg N.K. (1974) A simple radioactive microsphere method for measuring regional blood flow and cardiac output. Invest Radiol 9:126–132

    Google Scholar 

  84. Heyman M.A., Payne B.D., Hoffman H.E., Rudolph A.M. (1977) Blood flow measurements with radionuclidelabeled particles. Prog Caridiovasc Dis 20:55–79

    Google Scholar 

  85. Daniel R.K., Williams H.B. (1973) The free transfer of skin flaps by microvascular anastomosis: an experimental study and a reappraisal. Part 1: vascular supply of the skin. Plast Reconstr Surg 52:16–31

    PubMed  CAS  Google Scholar 

  86. Wagner H.N., Rhodes B.A., Sasaki Y., Ryan J.P. (1969) Studies of the circulation with radioactive microspheres. Inves Radiol 4:374–386

    Google Scholar 

  87. Buckberg G.D., Luck J.C., Payne D.B., Hoffman H.E., Archie J.P., Fixler D.E. (1971) Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol 31:598–604

    PubMed  CAS  Google Scholar 

  88. Sasaki Y., Wargner H.N. (1971) Measurement of the distribution of cardiac output in unanesthetized rats. J Appl Physiol 30:879–884

    PubMed  CAS  Google Scholar 

  89. Archie J.P., Fixler D.E., Ullyot D.J., Hoffman H.E., Utlev J.R., Carlson E.L. (1973) Measurement of cardiac output with end organ trapping of radioactive microspheres. J Appl Physiol 35:148–154

    PubMed  CAS  Google Scholar 

  90. Pang C.Y., Forrest C.R., Neligan P.C., Lindsay W.K. (1986) Augmentation of blood flow in delayed random skin flaps in the pig: effect of length of delay period and angiogenesis. Plast Reconstr Surg 78:68–74

    PubMed  CAS  Google Scholar 

  91. Pang C.Y., Neligan P.C., Forrest C.R., Nakatsuka T., Sasaki G.H. (1986) Hemodynamics and vascular sensitivity to circulating norepinephrine in normal skin and delayed and acute random skin flaps in the pig. Plast Reconstr Surg 78:75–8475-84

    Google Scholar 

  92. Kreidstein M.L., Levine R.H., Knowlton R.J., Pang C.Y. (1995) Serial fluorometric assessments of skin perfusion in isolated perfused human skin flaps. Br J Plast Surg 48:288–293

    PubMed  CAS  Google Scholar 

  93. Rival R., Bance M., Antonyshyn O., Phillips J., Pang C.Y. (1995) Comparison of laser flow meter and radioactive microspheres in measuring blood flow in pig skin flaps. Laryngoscope 105:383–386

    PubMed  CAS  Google Scholar 

  94. Chiodo A.A., Gur E., Pang C.Y., Neigan P.C., Boyd B., Binhammer P.M., Forrest C.F. (2000) The vascularized pig fibula bone flap: effect of segmental osteotomies and internal fixation on blood flow. Plast Reconstr Surg 105:1004–1012

    PubMed  CAS  Google Scholar 

  95. Inada Y., Tamai S., Mizumoto S., Ono H., Kawanishi K., Fukui A. (1993) Nonradioactive coloured microsphere measurement of regional blood flow for axial pattern flaps in rabbits. Br J Plast Surg 46:127–131

    PubMed  CAS  Google Scholar 

  96. Tsuchida Y., Aoki N., Fukuda O., Nakano M., Igarashi H. (1998) Changes in hemodynamics in jejunal flaps of rabbits due to ischemia, venous congestion, and reperfusion measured by means of colored microspheres. Plast Reconstr Surg 101:147–154

    PubMed  CAS  Google Scholar 

  97. Hynes W, McGregor A.G. (1949) The use of fluorescein in estimating the blood flow in pedicled skin flaps and tubes. Br J Plast Surg 2:4–12

    PubMed  CAS  Google Scholar 

  98. Myers M.B. (1962) Prediction of skin sloughs at the time of operation with use of fluorescein dye. Surgery 51:158–162

    PubMed  Google Scholar 

  99. Thorvaldsson S.E., Grabb W.C. (1974) The intravenous fluorescein test as a measure of skin flap viability. Plast Reconstr Surg 53:576–578

    PubMed  CAS  Google Scholar 

  100. McCraw J.B., Myers B., Shanklin K.D. (1977) The value of fluorescein in predicting the viability of arterialized flaps. Plast Reconstr Surg 60:710–719

    PubMed  CAS  Google Scholar 

  101. Slinger R., Lewis C.M., Franklin J.D., Lynch J.B. (1978) Fluorescein test for prediction of flap viability during breast reconstructions. Plast Reconstr Surg 61:371–375

    Google Scholar 

  102. Daniel R.K., Kerrigan C.L. (1982) The omnipotential pig buttock flap. Plast Reconstr Surg 70:11–15

    PubMed  CAS  Google Scholar 

  103. Kerrigan C.L., Daniel R.K. (1983) Monitoring acute skin flap failure. Plast Reconstr Surg 71:519–524

    PubMed  CAS  Google Scholar 

  104. Pang C.Y., Neligan P.C., Nakatsuka T., Sakai G.H. (1986) Assessment of the fluorescein dye test for prediction of skin flap viability in pigs. J Surg Res 46:173–181

    Google Scholar 

  105. Silverman D.G., La Rossa D.D., Barlow C.H., Bering T.G., Popky L.M., Smith T.C. (1980) Quantification of tissue fluorescein delivery and prediction of flap viability with the fiberoptic dermofluorometer. Plast Reconstr Surg 66:545–553

    PubMed  CAS  Google Scholar 

  106. Kreidstein M.L., Levine R.H., Knowlton R.J., Pang C.Y. (1995) Serial fluorometric assessment of skin perfusion inisolated perfused human skin flaps. Br J Plast Surg 48:288–293

    PubMed  CAS  Google Scholar 

  107. Kety S.S., Schmidt C.F. (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143:53–66

    CAS  Google Scholar 

  108. Aukland K., Bower B.F., Berliner R.W. (1964) Measurement of local blood flow with hydrogen gas. Circ Res 14:164–184

    PubMed  CAS  Google Scholar 

  109. Fieschi C., Bozzao L., Agnoli A., Nardini M., Bartolini A. (1969) The hydrogen method of measuring local blood flow in subcortical structures of the brain. Exp Brain Res 7:111–119

    PubMed  CAS  Google Scholar 

  110. Neely W.A., Turner M.D., Hardy J.A., Godfrey W.D. (1965) The use of the hydrogen electrode. J Surg Res 5:363–369

    PubMed  CAS  Google Scholar 

  111. Thomson J.G., Kerrigan C. (1991) Hydrogen clearance: assessment of technique for measurement of skin flap blood flow in pigs. Plast Reconstr Surg 88:657–663

    PubMed  CAS  Google Scholar 

  112. Young W.(1980) H2 Clearance measurement of blood flow: a review of technique and polarographic principles. Stroke 11:552–564

    PubMed  CAS  Google Scholar 

  113. Rival R., Bance M., Antonyshyn O., Phillips J., Pang C.Y. (1995) Comparison of laser Doppler flow meter andradioactive microspheres in measuring blood flow in pig skin flaps. Laryngoscope 105:383–386

    PubMed  CAS  Google Scholar 

  114. Eichhorn W., Auer T., Yoy E.D., Hoffmann K. (1994) Laser Doppler imaging of axial and random pattern flaps in the maxillo-facial area. A preliminary report. J Craniomaxillofacial Surg 21:25–29

    Google Scholar 

  115. Bornmyr S., Arner M., Svensson H. (1994) Laser Doppler imaging of finger skin blood flow in patents after microvascular repair of the ulnar artery at the wrist. J Hand Surg 19B:295–300

    Google Scholar 

  116. Stucker M., Auer T., Hoffmann P. (1995) Spacial pattern of cutaneous perfusion in wound healing. In: HL Wound healing and skin physiology. Springer, Berlin Heidelberg, pp 127–136

    Google Scholar 

  117. Koman L.A., Ruch D.S., Aldridge M., Smith B.P., Holden M.B., Salem W., Fulcher M. (1998) Arterial reconstruction in the ischemic hand and wrist: effects on microvascular physiology and health-related quality of life. J Hand Surg 23A:773–782

    Google Scholar 

  118. Duling B.R. (1973) The preparation and use of the hamster cheek pouch for studies of a microcirculation. Microvasc Res 5:423–429

    PubMed  CAS  Google Scholar 

  119. Zarem H.A., Soderberg R. (1982) Tissue reaction to ischemia in the rabbit ear chamber: effects of prednisolone on inflammation and microvascular flow. Plast Reconstr Surg 70:667–674

    PubMed  CAS  Google Scholar 

  120. Eriksson E., Reploge R.L., Glagov S. (1987) Reperfusion of skeletal muscle after warm ischemia. Ann Plast Surg 18:224–228

    PubMed  CAS  Google Scholar 

  121. Gore R.W., Baldwin A.L. (1986) Intestinal and mesenteric preparations for microvascular studies. In: Baker C.H., Nastuk W.L. (eds) Microcirculatory technology. Academic, Orlando FL

    Google Scholar 

  122. Grant R.T. (1964) Direct observations of skeletal muscle blood vessels (rat cremaster). J Physiol 172:123–137

    PubMed  CAS  Google Scholar 

  123. Grant R.T. (1966) The effects of denervation on skeletal muscle blood vessels (rat cremaster). J Anat 100:305–316

    PubMed  CAS  Google Scholar 

  124. Baez S. (1973) An open cremaster muscle preparationfor the study of blood vessels by in vivo microscopy. Microvasc Res 5:384–394

    PubMed  CAS  Google Scholar 

  125. Acland R.D., Anderson G., Siemionow M., Steven M. (1989) Direct in vivo observations of embolic events in the microcirculationdistal to a small-vesssel anastomosis. Plast Reconstr Surg 84:280–288

    PubMed  CAS  Google Scholar 

  126. Barker J.H., Acland R.D., Anderson G.L., Patel J. (1992) Microcirculatory disturbances following the passage of emboli in an experimental free-flap model. Plast Reconstr Surg 95:95–102

    Google Scholar 

  127. Millesi H., Meissl G., Berger A. (1972) The interfascicular nerve grafting of the median and ulnar nerves. J Bone Joint Surg (Am) 54:727–750

    CAS  Google Scholar 

  128. Millesi H. (1979) Microsurgery of peripheral nerves. World J Surg 3:67–79

    PubMed  CAS  Google Scholar 

  129. Sunderland S. (1945) The intraneural topography of the radial, median and ulnar nerves. Brain 68:243–299

    PubMed  CAS  Google Scholar 

  130. Sunderland S. (1953) Funicular suture and funicular exclusion in the repair of severed nerves. B J Surg 40:580–587

    CAS  Google Scholar 

  131. Hakstian R.W. (1968) Funicular orientation by direct stimulation. J Bone Joint Surg (Am) 50:1178–1186

    PubMed  CAS  Google Scholar 

  132. Karnovsky M.J., Roots L. (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    PubMed  CAS  Google Scholar 

  133. Riley D.A., Lang D.H. (1984) Carbonic anhydrase activity of human peripheral nerves: possible histochemical aid to nerve repair. J Hand Surg 9A:112–120

    CAS  Google Scholar 

  134. Gruber H., Freilinger G., Holle J., Mandl H. (1976) Identification of motor and sensory funiculi in cat nerves and their selective reunion. Br J Plast Surg 29:70–73

    PubMed  CAS  Google Scholar 

  135. Fonnum F. (1966) A radiochemical method for the estimation of choline acety/transferase. Biochem J 100:479–484

    PubMed  CAS  Google Scholar 

  136. Engel J., Ganel A., Melamed S., Rimon, Farine I. (1980) Choline acety/transferase for differentiation between human motor and sensory nerve fibers. Ann Plast Surg 4:376–380

    PubMed  CAS  Google Scholar 

  137. Ganel A., Farine I., Aharonson Z., Horoszowski H., Melamed R., Rimon S. (1982) Intraoperative nerve fascicleidentification using choline acety/transferase. A preliminary report. Clin Orthop 165:228–232

    PubMed  Google Scholar 

  138. Yunshao H., Shizhen Z. (1988) Acetylcholinesterase:a histochemical identification of motor and sensory fascicles in human peripheral nerve and its use during operat ion. Plast Reconstr Surg 82:125–130

    Google Scholar 

  139. Szabolcs M.J., Gruber H., Schaden G.E., Freilinger G., Deutinger M., Girsch W., Happak W. (1991) Selective fascicular nerve repair: a rapid method for intraoperative motorsensory differentiation by acetylcholinesterase histochemistry. Eur J Plast Surg 14:21–25

    Google Scholar 

  140. Landi A., Copeland S.A., Wynn P.C.B., Jones S.J. (1980) The role of somatosensory evoked potentials and nerve conduction studies in the surgical management of brachial plexus injuries. J Bone Joint Surg (Br) 62:492–496

    Google Scholar 

  141. Van Beek A., Hubble B., Kinkead L., Torro S., Suchy H.(1983) Clinical use of nerve stimulation and recording techniques. Plast Reconstr Surg 71:225–240

    PubMed  Google Scholar 

  142. Sugioka H., Tsuyama N., Hara T., Nagano A., Tachibana S., Ochiai N. (1982) Investigation of brachial plexus injuries by intraoperative cortical somatosensory evoked potentials. Arch Orthop Traumat Surg 99:143–151

    CAS  Google Scholar 

  143. Hebb C.O., Waites G.M.H. (1956) Choline acetylase in antero-and retro-grade degeneration of a cholinergic nerve. J Physiol 132:667–671

    PubMed  CAS  Google Scholar 

  144. Jablecki C., Brimijoin S. (1975) Axoplasmic transport of choline-acety/transferase activity in mice: effect of age and neurotomy. J Neurochem 25:583–593

    PubMed  CAS  Google Scholar 

  145. White H.L., Wu J.C. (1973) Kinetics of choline acety/transferases (EC2.3.1.6) from human and other mammalian central and peripheral nervous tissues. J Neurochem 20:297–307

    PubMed  CAS  Google Scholar 

  146. Fonnum F. (1975) A rapid radiochemical method for the determination of choline acety/transferase. J Neurochem 24:407–409

    PubMed  CAS  Google Scholar 

  147. Ohgushi H., Tamai S., Masuda S., Masuhara K. (1983) Choline acety/transferase activity in the differentiation between motor and sensory funiculi in peripheral nerve (in Japanese). Seikeigeka 34:2034–2039

    Google Scholar 

  148. Yajima H., Kawanishi K., Ohgushi H., Tamai S. (1995) Experimental study on choline acety/transferase activity measurement for brachial plexus injury. Microsurgery 16:679–683

    PubMed  CAS  Google Scholar 

  149. Jabaly M.E., Wallance W.H., Heckler F.R. (1980) Internal topography of major nerves of the forearm and hand: a current view. J Hand Surg 5:1–18

    Google Scholar 

  150. Chow J.A., van Beek A.L., Meyer D.L., Johnson M.C. (1985) Surgical significance of the motor fascicular group of the ulnar nerve in the forearm. J Hand Surg 10A:867–872

    Google Scholar 

  151. Sunderland S. (1945) The intraneural topography of the radial, median, and ulnar nerves. Brain 68:243–299

    PubMed  CAS  Google Scholar 

  152. Hakstian R.W. (1968) Funicular orientation by direct stimulation. An aid to peripheral nerve repair. J Bone Joint Surg 50:1178–1186

    PubMed  CAS  Google Scholar 

  153. Gaul J. (1986) Electrical fascicle identification as an adjunct to nerve repair. Hand Clin 2:709–722

    PubMed  Google Scholar 

  154. Karnovsky M.J., Roots L. (1964) A “direct-coloring” thiocholine method for choline esterase. J Histochem Cytochem 12:219–221

    PubMed  CAS  Google Scholar 

  155. Grüber H. (1976) Identification of motor and sensory funiculi in cut nerves and their selective reunion. Br J Plast Surg 29:70–73

    PubMed  Google Scholar 

  156. Sumita J., Tajima T. (1979) Distribution of motor fiber of human median nerve by Karnovsky staining. Seikeigeka 30:1427–1429 (in Japanese)

    Google Scholar 

  157. He Y., Zhong S. (1988) Acetylcholinesterase: a histochemical identification of motor and sensory fascicles in human peripheral nerve and its use during operation. Plast Reconstr Surg 82:125–130

    PubMed  CAS  Google Scholar 

  158. Kanaya F., Ogden L., Breidenbach W.C., Tsai T-M., Schcker L. (1991) Sensory and motor fiber differentiation with Karnovsky staining. J Hand Surg 16A:851–858

    Google Scholar 

  159. Kanaya F., Jevans A.W. (1992) Rapid histochemical identification of motor and sensory fascicles: preparation of solution. Plast Reconstr Surg 90:514–515

    PubMed  CAS  Google Scholar 

  160. Hickey M.J., Hurley J.V., Angel M.F., O’Brien B.M. (1992) The response of the rabbit rectus femoris muscle to ischemia and reperfusion. J Surg Res 53:369–377

    PubMed  CAS  Google Scholar 

  161. Fukui A., Tamai S. (1994) Present status of replantation in Japan. Microsurgery 15:842–847

    PubMed  CAS  Google Scholar 

  162. Harashina T. (1988) Analysis of 200 free flaps. Br J Plast Surg 41:33–36

    PubMed  CAS  Google Scholar 

  163. Lidman D., Daniel R.K. (1981) Evaluation of clinical microvascular anastomoses: reasons for failure. Ann Plast Surg 6:215–223

    PubMed  CAS  Google Scholar 

  164. Dubernard J.M., Owen E., Herzberg G., Lanzetta M., Martin X., Kapila M., Hakim N.S. (1999) Human hand allograft: report on first 6 months. Lancet 353:1315–1320

    PubMed  CAS  Google Scholar 

  165. Francel T.J., Vander Kolk C.A., Yaremchuk M.J. (1992) Locally applied hypothermia and microvascular muscle flap. Ann Plast Surg 28:246–251

    PubMed  CAS  Google Scholar 

  166. Fantone J.C., Ward P.A. (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:397–418

    CAS  Google Scholar 

  167. Allen F.M. (1938) Resistance of peripheral tissues to asphyxia at various temperatures. Surg Gynecol Obstet 67:746–751

    Google Scholar 

  168. Muramatsu I., Takahata N., Usui M., Ishii S. (1985) Metabolic and histologic changes in the ischemic muscles of replanted dog legs. Clin Orthop 196:292–299

    PubMed  Google Scholar 

  169. Van Alphen W.A., Smith A.R., ten Kate F.J.W. (1988) Maximum hypothermic ischemia in replants containing muscular tissue. J Hand Surg 13A:427–434

    Google Scholar 

  170. Francel T.J., Vander Kolk C.A., Yaremchuk M.J. (1992) Locally applied hypothermia and microvascular muscle flap transfers. Ann Plast Surg 28:246–251

    PubMed  CAS  Google Scholar 

  171. Kihara M., Miura T., Ishiguro N. (1991) Preservation of skeletal muscle in tissue transfers using rat hindlimbs. Plast Reconstr Surg 88:275–284

    Google Scholar 

  172. Yokoyama K., Homan M., Takkagishi K., Yamamoto M. (1992) Protective effects of coenzyme 010 on ischemiainduced reperfusion injury in ischemic limb models. Plast Reconstr Surg 90:890–898

    PubMed  CAS  Google Scholar 

  173. Tamai S. (1978) Analysis of 163 replantations in an 11 year period. Clin Plast Surg 5:195–202

    PubMed  CAS  Google Scholar 

  174. Van Giesen P.J., Seaber A.V., Urbaniak J.R. (1983) Storage of amputated parts prior to replantation-an experimental study with rabbit ears. J Hand Surg 8:60–65

    Google Scholar 

  175. Weiss A.C., Carey L.A., Randolph M.A., Moore J.R., Weiland A.J. (1989) Oxygen radical scavengers improve vascular patency and bone-muscle cell survival in an ischemic extremity replant model. Plast Reconstr Surg 84:117–123

    PubMed  CAS  Google Scholar 

  176. Nakagawa Y., Ono H., Mizumoto S., Fukui A., Tamai S. (1998) Subzero nonfreezing preservation in a murine limb replantation model. J Orthop Sci 3:156–162

    PubMed  CAS  Google Scholar 

  177. Ono H., Nakagawa Y., Mizumoto S., Tomita N., Tamai S. (1995) Evaluation of vascular compliance and vasoconstrictive reactions in amputated hindlimbs of rats. J Orthop Res 13:375–381

    PubMed  CAS  Google Scholar 

  178. Ono H., Nakagawa Y., Mizumoto S., Tamai. S (1997) Vascular compliance and vasoconstrictive reactions in rat hindlimbs: comparison between storage temperatures of-1°C and 4°C. J Reconstr Microsurg 13:409–414

    PubMed  CAS  Google Scholar 

  179. Zavos P.M., Graham E.F. (1981) Preservation of turkeyspermatozoa by the use of emulsions and supercooling methods. Cryobiology 18:497–505

    PubMed  CAS  Google Scholar 

  180. Ohyama Y., Asahina E. (1972) Supercooling injury in the egg cell of the sea urchin. Cryobiology 9:22–28

    PubMed  CAS  Google Scholar 

  181. Kurnick N.B., Nokay N., Hampton B. (1967) Survival of frozen stored human and mouse bone marrow cells. Radiat Res 32:706–722

    PubMed  CAS  Google Scholar 

  182. Hirase Y., Kojima T., Uchida M., Takeishi M. (1992) Cryopreserved allogeneic vessel and nerve grafts: hind-limb replantation model in the rat. J Reconstr Microsurg 8:437–443

    PubMed  CAS  Google Scholar 

  183. Bowers W.D. Jr, Hubbard R.W., Daum R.C., Ashbaugh P., Nilson E. (1973) Ultrastructural studies of muscle cells and vascular endothelium immediately after freeze-thaw injury. Cryobiology 10:9–21

    PubMed  Google Scholar 

  184. Kreyberg L. (1950) La stase et son role dans le development de la necrose. Acta Pathol Microbiol Scand Suppl 91:40–50

    Google Scholar 

  185. Weatherly-White R.C.A., Sjostrom B., Paton B.C. (1964) Experimental studies in cold injury. II. The pathogenesis of frostbite. J Surg Res 4:17–22

    Google Scholar 

  186. Rosen H.M., Slivjak M.J., McBrearty F.X. (1985) Preischemic flap washout and its effect on the no reflow phenomenon. Plast Reconstr Surg 76:737–747

    PubMed  CAS  Google Scholar 

  187. Gordon L., Levinsohn D.G., Borowsky C.D., Manojlovic R.D., Sessler D.I., Weiner M.W., Baker A.J. (1992) Improved preservation of skeletal muscle in amputated limbs using pulsatile hypothermic perfusion with University of Wisconsin solution. J Bone Joint Surg 74A:1358–1366

    Google Scholar 

  188. Wang W.Z., Anderson G., Firrell J.C., Tsai T.M. (1998) Ischemic preconditioning versus intermittent reperfusion to improve blood flow to a vascular isolated skeletal muscle flap of rats. J Trauma 45:953–959

    PubMed  CAS  Google Scholar 

  189. Xiaolu L., Cooley B.C., Fowler J.D., Gould J.S. (1995) Intravascular heparin protects muscle flaps from ischemia/reperfusion injury. Microsurgery 16:90–93

    Google Scholar 

  190. Goldberg J.A., Pederson W.C., Barwick W.J. (1989) Salvage of free tissue transfers using thrombolytic agents. J Reconstr Microsurg 5:351–356

    PubMed  CAS  Google Scholar 

  191. Feng L.T. (1988) Vasoactive prostaglandins in the impending no-reflow state: evidence for a primary disturbance in microvascular tone. Plast Reconstr Surg 81:755–764

    PubMed  CAS  Google Scholar 

  192. Douglas B., Weiberg H. (1987) Beneficial effects of ibuprofen on experimental microvascular free flaps: pharmacologic alteration of the no-reflow phenomenon. Plast Reconstr Surg 79:366–371

    PubMed  CAS  Google Scholar 

  193. Nakagawa Y., Ono H., Mizumoto S., Fukui A., Tamai S. (1994) Effect of a calcium antagonist on the vascular resistance of preserved murine hind limbs. Jpn J Reconstr Microsurg 7:155–162

    Google Scholar 

  194. Dubernard J-M., Qwen E., Herzberg G., Lanzetta M., Martin X., Kapila H., Dawahra M., Hakim N.S. (1999) Human hand allograft: Report on first 6 months. Lancet 353:1315–1320

    PubMed  CAS  Google Scholar 

  195. Cooney W.P., Hentz V.R. (2002) Hand transplantation — Primum non nocere. J Hand Surg 27A:165–168

    Google Scholar 

  196. Fung J.J., Allessiani M., Abu-Elmagd K., Todo S., Shapiro R., Tzakis A., vanThiel D., Armitage J., Jain A., McCauley J. (1991) Adverse effects associated with the use of FK506. Transplant Proc 23:3105–3108

    PubMed  CAS  Google Scholar 

  197. Penn I (1994) The problem of cancer in organ transplant recipients: An overview. Transplant Sci 4:23–32

    PubMed  CAS  Google Scholar 

  198. Hutchinson I. (1996) Transplantation and rejection. In: Immunology, 4th edn. Mosby, London, 26.21–26.12

    Google Scholar 

  199. Long E.O. (1989) Intracellular traffic and antigen processing. Immunol Today 10:232–234

    PubMed  CAS  Google Scholar 

  200. Marrack P., McCormack J., Kappler J. (1989) Presentation of antigen, foreign major histocompatibility complex protein and self by thymus cortical epithelium. Nature 338:503–505

    PubMed  CAS  Google Scholar 

  201. Bjorkman P.J., Saper M.A., Samraoui B., Bennett W.S., Strominger J.L., Wiley D.C. (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518

    PubMed  CAS  Google Scholar 

  202. Brown J.H., Jardetzky T., Saper M.A., Samraoui B., Bjorkman P.J., Wiley D.C. (1988) A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 332:845–850

    PubMed  CAS  Google Scholar 

  203. Trowsdale J., Ragoussis J., Campbell R.D. (1991) Map of the human MHC. Immunol Today 12:443–446

    PubMed  CAS  Google Scholar 

  204. Davis M.M., Bjorkman P.J. (1988) T cell antigen receptor genes and T cell antigen. Nature 334:395–402

    PubMed  CAS  Google Scholar 

  205. Ramsdell F., Fowlkes B.J. (1990) Clonal deletion versus clonal anergy: Role of the thymus in inducing self tolerance. Science 248:1342–1348

    PubMed  CAS  Google Scholar 

  206. Neefjes J.J., Ploegh H.L. (1992) Intracellular transport of MHC class II molecules. Immunol Today 13:179–184

    PubMed  CAS  Google Scholar 

  207. Malnati M.S., Marti M., LaVaute T., Jaraquemada D., Biddison W., DeMars R., Long E.O. (1992) Processing pathways for presentation of cytosolic antigen to MHC class II restricted T cells. Nature 357:702–704

    PubMed  CAS  Google Scholar 

  208. Willebrand E.V., Salmela K., Isoniemi H., Krogerus L., Taskinen E., Häyry P. (1992) Induction of HLA class II antigen and interleukin 2 receptor expression in acute vascular rejection of human kidney allografts. Transplantation 53:1077–1081

    Google Scholar 

  209. Ford H.R., Hoffman R.A., Tweardy D.J., Kispert P., Wang S., Simmons R.L. (1991) Evidence that production of interleukin 6 within the rejecting allo-graft coincides with cytotoxic T lymphocyte development. Transplantation 51:656–661

    PubMed  CAS  Google Scholar 

  210. Martinez O.M., Krams S.M., Sterneck M., Villanueva J.C., Falco D.A., Ferrell L.D., Lake J., Roberts J.P., Ascher N.L. (1992) Intragraft cytokine profile during human liver allograft rejection. Transplantation 53:449–456

    PubMed  CAS  Google Scholar 

  211. Kirk A.D., Ibrahim M.A., Bollinger R.R., Dawson D.V., Finn O.J. (1992) Renal allo-graft infiltrating lymphocytes. A prospective analysis of in vitro growth characteristics and clinical relevance. Transplantation 53:329–338

    PubMed  CAS  Google Scholar 

  212. Abbas A.K., Lichtman A.H., Pober J.S. (1994) Immune responses to tissue transplants. In: Cellular and molecular immunology, 2nd edn. W.E. Saunders, Philadelphia, pp 339–354

    Google Scholar 

  213. Santamaria P., Boyce-Jacino M.T., Lindstrom A.L., Barbosa J.J., Faras A.J., Rich S.S. (1992) HLA class II “typing”: direct sequencing of DRB, DQB, and DQA genes. Hum Immunol 33:69–81

    PubMed  CAS  Google Scholar 

  214. Chan G.L., Gruber S.A., Skjei K.L., Canafax D.M. (1990) Principles of immunosuppression. Crit Care Clin 6:841–892

    PubMed  CAS  Google Scholar 

  215. Caine R.Y., Collier D.S.J., Lim S., Pollard S.G., Samaan A., White D.J.G., Thiru S. (1989) Rapamycin for immunosuppression in organ allografting. Lancet 2:227

    Google Scholar 

  216. Kino T., Hatanaka H., Miyata S., Inamura N., Nishiyama M., Yajima T., Goto T., Okuhara M., Kohsaka M., Aoki H. (1987) FK506,a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot 40:1256–1265

    PubMed  CAS  Google Scholar 

  217. Tocci M.J., Matkovich D.A., Collier K.A. Kwok P., Dumont F., Degudicibus S.L.S., Siekierka J.J., Chin J., Hutchinson N.I. (1989)The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J Immunol 143:718–726

    PubMed  CAS  Google Scholar 

  218. Dumont F.J., Staruch M.J., Koprak S.L., Melino M.R., Sigal N.H. (1990) Distinct mechanism of suppression of murine T cell activation by the related macrolides FK506 and rapamycin. J Immunol 144:251–258

    PubMed  CAS  Google Scholar 

  219. Cramer D.V., Chapman F.A., Jaffee B.D., Jones E.A., Knoop M., Hreha-Eiras G., Makowka L. (1992)The effect of a new immunosuppressive drug, brequinar sodium, on heart, liver, and kidney allograft rejection in the rat. Transplantation 53:303–308

    PubMed  CAS  Google Scholar 

  220. van den Helder T.B., Benhaim P., Anthony J.P., McCalmont T.H., Mathes S.J. (1994) Efficacy of RS-61443 in reversing acute rejection in a rat model of hindlimb allotransplantation. Transplantation 57:427–433

    PubMed  Google Scholar 

  221. Ochiai T., Gunji Y., Nagata M., Asano T., Isono K. (1991) Effective and safe use of FK506: Combination treatment with rapamycin or RS-61443in experimental organ transplantation. Transplant Proc 23:2718–2719

    PubMed  CAS  Google Scholar 

  222. D’Alessandro A.M., Pirsch J.D., Stratta R.J., Sollinger H.W., Kalayoglu M., Maki D.G., Belzer F.O. (1989) OKT3 salvage therapy in a quadruple immunosuppressive protocol in cadaveric renal transplantation. Transplantation 47:297–300

    PubMed  Google Scholar 

  223. Deierhoi M.H., Barber W.H., Curtis J.J., Julian B.A., Luke R.G., Hudson S., Barger B.O., Diethelm A.G. (1988)A comparison of OKT3 monoclonal antibody and corticosteroids in treatment of acute renal allograft rejection. Am J Kidney Dis 11:86–89

    PubMed  CAS  Google Scholar 

  224. Cantarovich D., Le-Mauff B., Hourmant M., Giral M., Denis M. Him M., Jacques Y., Soulillou J.P. (1989)Anti-interleukin 2 receptor monoclonal antibody in the treatment of ongoing acute rejection episodes of human kidney graft — a pilot study. Transplantation 47:454–457

    PubMed  CAS  Google Scholar 

  225. Kupiec-Weglinski J.W., Diamanstein T., Tilney N.L. (1988) Interleukin 2 receptor-targeted therapy-rationale andapplications in organ transplantation. Transplantation 46:785–792

    PubMed  CAS  Google Scholar 

  226. Soulillou J.P., Peyrounet P., Mauff B.L., Hourmant M., Olive D., Mawas C., Delaage M., Him M., Jacques Y. (1987) Prevention of rejection of kidney transplants by monoclonal antibody directed against interleukin 2. Lancet 1:1339–1342

    PubMed  CAS  Google Scholar 

  227. Cosimi A.B., Conti D., Delmonico F.L., Preffer F.I., Wee S-L., Rothlein R., Faanes R., Colvin R.B. (1990) In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts. J Immunol 144:4604–4612

    PubMed  CAS  Google Scholar 

  228. Isobe M., Yagita H., Okumura K., Ihara A. (1992) Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 255:1125–1127

    PubMed  CAS  Google Scholar 

  229. Nakao Y., Mackinnon S.E., Strasberg S.R., Hertl M.C., Isobe M., Susskind B.M., Mohanakumar T., Hunter D.A. (1995) Immunosuppressive effect of monoclonal antibodies to ICAM-1 and LFA-1 on peripheral nerve allograft in mice. Microsurgery 16:612–620

    PubMed  CAS  Google Scholar 

  230. Fujiwara H., Qian J-H., Satoh S., Kokudo S., Ikegami R., Hamaoka T. (1986) Studies on the induction of toleranceto alloantigens. The generation of serum factor able to transfer alloantigen-specific tolerance for delayed-type hypersensitivity by portal venous inoculation with allogeneic cells. J Immunol 136:2763–2768

    PubMed  CAS  Google Scholar 

  231. Haisa M., Sakagami K., Matsumoto T., Kawamura T., Uchida S., Fujiwara T., Shiozaki S., Inagaki M., Orita K. (1989) Donor-specific transfusion (DST) with intermittent administration of azathioprine induces suppressor T cells and MLR-inhibiting factors without sensitization. Transplant Proc 21:1814–1817

    PubMed  CAS  Google Scholar 

  232. Kawamura T., Sakagami K., Haisa M., Morisaki F., Takasu S. (1989) Induction of antiidiotypic antibodies by donorspecific blood transfusions: Establishment of a humanmouse hybridoma secreting the MLR-inhibiting factor. Transplantation 48:459–463

    PubMed  CAS  Google Scholar 

  233. Salvatierra O.J., Vincenti F., Amend W., Potter D., Iwaki Y., Opelz G., Terasaki P., Duca R., Cochrum K., Hanes D., Stoney R.J., Feduska N.J. (1980) Deliberate donor-specific blood transplantations prior to living related renal transplantation. A new approach. Ann Surg 192:543–552

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Fukui, A. (2003). Essential Laboratory Techniques. In: Tamai, S., Usui, M., Yoshizu, T. (eds) Experimental and Clinical Reconstructive Microsurgery. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67865-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67865-6_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67998-1

  • Online ISBN: 978-4-431-67865-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics