Skip to main content
  • 94 Accesses

Abstract

Vascular narrowing is the fundamental defect characterizing atherosclerosis and hypertension. This loss of physiological caliber occurs despite the remarkable ability of normal vessels to maintain the caliber appropriate for the blood flow needed for the subservient organ. Indeed, the ability to adjust caliber must be very primitive. The vessel tree, like any closed circuit, can only continue to conduct blood if each branch has an appropriate resistance to flow. Flow, moreover, is proportional to the fourth power of the radius. Thus, the normal vessel wall must and does have an exquisite mechanism for controlling lumen size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Brien ER, Alpers CE, Stewart DK, Ferguson M, Tran N, Gordon D, Benditt EP, Hinohara T, Simpson JB, Schwartz SM (1993) Proliferation in primary and restenotic coronary atherectomy tissue: implications for antiproliferative therapy. Circ Res 73: 223–231

    Article  PubMed  Google Scholar 

  2. Mintz GS, Douek PC, Bonner RF, Kent KM, Pichard AD, Satier LF, Leon MB (1993) Intravascular ultrasound comparison of de novo and restenotic coronary artery lesions (abstract). J Am Coll Cardiol 21: 118A

    Google Scholar 

  3. Schwartz SM, Murry CD, O’Brien ER (1996) Vessel wall response to injury. Sci Am Sci Med Mar/Apr: 12–21

    Google Scholar 

  4. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316: 13711375

    Google Scholar 

  5. Clarkson TB, Prichard RW, Morgan TM, Petrick GS, Klein KP (1994) Remodeling of coronary arteries in human and nonhuman primates. JAMA 271 (4): 289–294

    Article  PubMed  CAS  Google Scholar 

  6. Dussaillant GR, Mintz GS, Pichard AD, Kent KM, Satter LF, Popma JJ, Wong SC, Leon MB (1995) Small stent size and intimai hyperplasia contribute to restenosis: a volumetric intravascular ultrasound analysis. J Am Coll Cardiol 26 (3): 720–724

    Article  PubMed  CAS  Google Scholar 

  7. Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 140: 1097–1103

    PubMed  CAS  Google Scholar 

  8. Coffin JD, Harrison J, Schwartz SM, Heimark R (1991) Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev Biol 148: 51–62

    Article  PubMed  CAS  Google Scholar 

  9. Fishman MC, Stainier DY (1994) Cardiovascular development. Prospects for a genetic approach. Circ Res 74 (5): 757–763

    Article  PubMed  CAS  Google Scholar 

  10. Dilley RJ, Schwartz SM (1989) Vascular remodeling in the growth hormone transgenic mouse. Circ Res 65: 1223–1240

    Article  Google Scholar 

  11. Majesky MW, Topouzis S (1995) Smooth muscle lineage diversity and atherosclerosis. Atherosclerosis 10: 56

    Google Scholar 

  12. Pardanaud L, Yassine F, Dieterlen-Lievre F (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development (Camb) 105: 473–485

    CAS  Google Scholar 

  13. Rosenquist TH, McCoy JR, Waldo KL, Kirby ML (1988) Origin and propagation of elastogenesis in the developing cardiovascular system. Anat Rec 221: 860–871

    Article  PubMed  CAS  Google Scholar 

  14. Majesky MW, Giachelli CM, Schwartz SM (1992) Rat carotid neointimal smooth muscle cells re-express a developmentally regulated phenotype during repair of arterial injury. Circ Res 71: 759–768

    Article  PubMed  CAS  Google Scholar 

  15. Wunsch AM, Little CD, Markwald RR (1994) Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Dev Biol 165: 585–601

    Article  PubMed  CAS  Google Scholar 

  16. Bobryshev YV, Lord RS (1995) Ultrastructural recognition of cells with dendritic cell morphology in human aortic intima. Contacting interactions of vascular dendritic cells in athero-resistant and athero-prone areas of the normal aorta. Arch Histol Cytol 58 (3): 307–322

    Article  PubMed  CAS  Google Scholar 

  17. Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic diseases in blood flow are endothelium-dependent. Science 231: 405–407

    Article  PubMed  CAS  Google Scholar 

  18. Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62: 347–504

    PubMed  CAS  Google Scholar 

  19. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ (1993) Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 21: 391–397

    Google Scholar 

  20. Alkjaer C, Heagerty AM, Mulvany MJ (1987) In vitro characteristics of vessels from patients with essential hypertension. J Clin Hypertens 3: 317–322

    Google Scholar 

  21. Korsgaard N, Aalkjaer C, Heagerty AM, Izzard AS, Mulvany MJ (1993) Histology of subcutaneous small arteries from patients with essential hypertension. Hypertension (Dallas) 22: 523–526

    Article  CAS  Google Scholar 

  22. Albelda SM, Oliver PD, Romer LH, Buck CA, Endo CAM (1990) A novel endothelial cell-cell adhesion molecule. J Cell Biol 110: 1227–1237

    Article  PubMed  CAS  Google Scholar 

  23. Gage AA, Fazekas C, Riley EE (1967) Freezing injury to large blood vessels in dogs. Surgery (St Louis) 61: 748–754

    CAS  Google Scholar 

  24. Bjorkerud S, Bondjers G (1971) Arterial repair and atherosclerosis after mechanical injury. Part 2. Tissue response after induction of a large superficial necrosis (deep longitudinal injury). Atherosclerosis 14: 259–276

    Google Scholar 

  25. Poole JCF, Cromwell SB, Benditt EP (1971) Behavior of smooth muscle cells and formation of extracellular structures in the reaction of arterial walls to injury. Am J Pathol 62: 391–414

    PubMed  CAS  Google Scholar 

  26. Haudenschild CC, Prescott MF, Chobanian AV (1980) Effects of hypertension and its reversal on aortic lesions of the rat. Hypertension (Dallas) 2: 33–44

    Article  CAS  Google Scholar 

  27. Velican D, Velican C (1976) Intimal thickening in developing coronary arteries and its relevance to atherosclerotic involvement. Atherosclerosis 23: 345

    Article  Google Scholar 

  28. Velican C, Velican D (1980) The precursors of coronary atherosclerotic plaques in subjects up to 40 years old. Atherosclerosis 37: 33–46

    Article  PubMed  CAS  Google Scholar 

  29. Sims FH, Gavin JB, Vanderwee MA (1989) The intima of human coronary arteries. Am Heart J 118: 32–38

    Article  PubMed  CAS  Google Scholar 

  30. Hatton MW, Moar SL, Richardson M (1989) De-endothelialization in vivo initiates a thrombogenic reaction at the rabbit aorta surface. Am J Pathol 135: 499–508

    PubMed  CAS  Google Scholar 

  31. Clowes AW, Clowes MM, Reidy MA (1983) Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest 49: 327–333

    Google Scholar 

  32. Schwartz SM, Heimark RL, Majesky MW (1990) Developmental mechanisms underlying pathology of arteries. Physiol Rev 70: 1177–1209

    PubMed  CAS  Google Scholar 

  33. Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314: 488500

    Google Scholar 

  34. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801–809

    Article  PubMed  CAS  Google Scholar 

  35. Jorgensen L, Grothe AG, Groves HM, Kinlough-Rathbone RL, Richardson M, Mustard JF (1988) Sequence of cellular responses in rabbit aortas following one and two injuries with a balloon catheter. Br J Exp Pathol 69: 473–486

    PubMed  CAS  Google Scholar 

  36. Fingerle J, Johnson R, Clowes AW, Majesky MW, Reidy MA (1989) Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc Natl Acad Sci USA 86: 8412–8416

    Article  PubMed  CAS  Google Scholar 

  37. Jackson CL, Raines EW, Ross R, Reidy MA (1993) Role of endogenous platelet-derived growth factor in arterial smooth muscle cell migration after balloon catheter injury. Arterioscler Thromb 13: 1218–1226

    Article  PubMed  CAS  Google Scholar 

  38. Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW (1992) Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest 89: 507–511

    Article  PubMed  CAS  Google Scholar 

  39. Majesky MW, Reidy MA, Bowen-Pope DF, Wilcox JN, Schwartz SM (1990) Platelet-derived growth factor ( PDGF) ligand and receptor gene expression during repair of arterial injury. J Cell Biol 111: 2149–2158

    Google Scholar 

  40. Lindner V, Reidy MA (1991) Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci USA 88: 3739–3743

    Article  PubMed  CAS  Google Scholar 

  41. Prescott M, Webb R, Reidy MA (1991) Angiotensin-converting enzyme inhibitors versus angiotensin II, AT1 receptor antagonist: effects on smooth muscle cell migration and proliferation after balloon catheter injury. Am J Pathol 139: 1291–1296

    PubMed  CAS  Google Scholar 

  42. Bennett MR, Schwartz SM (1995) Antisense therapy for angioplasty restenosis—some critical considerations. Circulation 92: 1981–1993

    Article  PubMed  CAS  Google Scholar 

  43. Clowes AW, Schwartz SM (1985) Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ Res 56: 139–145

    Article  PubMed  CAS  Google Scholar 

  44. Grotendorst GR, Seppa HEJ, Kleinman HK, Martin GR (1981) Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor. Proc Natl Acad Sci USA 78: 3669–3672

    Article  PubMed  CAS  Google Scholar 

  45. Schwartz SM, Stemerman MB, Benditt EP (1975) The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am J Pathol 81: 15–42

    Google Scholar 

  46. Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal and injured arterial wall. Circ Res 68: 450–456

    Article  PubMed  CAS  Google Scholar 

  47. Powell J, Clozel J, Muller R (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245: 186–188

    Article  PubMed  CAS  Google Scholar 

  48. Benditt EP, Benditt JM (1973) Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA 70: 1753–1756

    Article  PubMed  CAS  Google Scholar 

  49. Lee KT, Thomas WA, Florentin RA, Reiner JM, Lee WM (1976) Evidence for a polyclonal origin and proliferation heterogeneity of atherosclerotic lesions induced by dietary cholesterol in swine. Ann NY Acad Sci 275: 336–347

    Article  PubMed  CAS  Google Scholar 

  50. Thomas WA, Kim DN (1983) Biology of disease: atherosclerosis as a hyperplastic and/ or neoplastic process. Lab Invest 48: 245–255

    PubMed  CAS  Google Scholar 

  51. Janakidevi K, Lee KT, Kroms M, Imai H, Thomas WA (1984) Mosaicism in female hybrid hares heterozygous for glucose-6-phosphate-dehydrogenase. VI. Production of monotypism in the arotas of four of 10 mosaic hares fed cholesterol oxidation products. Exp Mol Pathol 41: 354–362

    Article  PubMed  CAS  Google Scholar 

  52. Taubman MB (1993) tissue factor regulation in vascular smooth muscle: a summary of studies performed using in vivo and in vitro models. Am J Cardiol 72:55C–60C

    Google Scholar 

  53. Fuster V, Badimon JJ, Badimon L (1992) Clinical-pathological correlations of coronary disease progression and regression. Circulation 86:Aí1-II111

    Google Scholar 

  54. Fuster V, Badimon L, Badimon J, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 326: 242–250

    Article  PubMed  CAS  Google Scholar 

  55. Fuster V, Badimon L, Badimon J, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 326: 310–318

    Article  PubMed  CAS  Google Scholar 

  56. Landers SC, Gupta M, Lewis JC (1994) Ultrastructural localization of tissue factor on monocyte-derived macrophages and macrophage foam cells associated with atherosclerotic lesions. Virchows Arch 425: 49–54

    Article  PubMed  CAS  Google Scholar 

  57. Brand K, Banka CL, Mackman N, Terkeltaub RA, Fan ST, Curtiss LK (1994) Oxidized LDL enhances lipopolysaccharide-induced tissue factor expression in human adherent monocytes. Arterioscler Thromb 14: 790–797

    Article  PubMed  CAS  Google Scholar 

  58. Wilcox JN, Smith KM, Schwartz SM, Gordon D (1989) Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 86: 2839–2843

    Article  PubMed  CAS  Google Scholar 

  59. Reidy MA (1985) A reassessment of endothelial injury and arterial lesion formation. Lab Invest 53: 513–520

    PubMed  CAS  Google Scholar 

  60. Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Am J Pathol 134: 1087–1097

    PubMed  CAS  Google Scholar 

  61. Kuntz RE, Gibson M, Nobuyoshi M, Bairn DS (1993) Generalized model of restenosis after conventional balloon angioplasty stenting and directional atherectomy. J Am Coll Cardiol 21: 15–25

    Article  PubMed  CAS  Google Scholar 

  62. Lawn RM, Wade DP, Hammer RE, Chiesa G, Verstuyft JG, Rubin EM (1992) Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature 360: 670–672

    Article  PubMed  CAS  Google Scholar 

  63. Schwartz SM, deBlois D, O’Brien ER (1995) The intima: soil for atherosclerosis and restenosis. Circ Res 77: 445–465

    Article  PubMed  CAS  Google Scholar 

  64. Majesky MW, Benditt EP, Schwartz SM (1988) Expression and developmental control of platelet-derived growth factor A-chain and B-chain/sis genes in rat aortic smooth muscle cells. Proc Natl Acad Sci USA 85: 1524–1528

    Article  PubMed  CAS  Google Scholar 

  65. Seifert RA, Schwartz SM, Bowen-Pope DF (1984) Developmentally regulated production of platelet-derived growth factor-like molecules. Nature 311: 669–671

    Article  PubMed  CAS  Google Scholar 

  66. Lemire JM, Covin CW, White S, Giachelli CM, Schwartz SM (1994) Characterization of cloned aortic smooth muscle cells from young rats. Am J Pathol 144: 1068–1081

    PubMed  CAS  Google Scholar 

  67. Walker L, Bowen-Pope DF, Ross R, Reidy MA (1986) Production of PDGF-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc Natl Acad Sci USA 83: 7311–7315

    Article  PubMed  CAS  Google Scholar 

  68. Sjolund M, Hedin U, Sejersen R, Heldin CH, Thyberg J (1988) Arterial smooth muscle cells express PDGF-A chain mRNA, secrete a PDGF-like mitogen, and bind exogenous PDGF in a phenotype-and growth state-dependent manner. J Cell Biol 106: 403–413

    Article  PubMed  CAS  Google Scholar 

  69. Lindner V, Reidy MA (1995) Platelet-derived growth factor ligand and receptor expression by large vessel endothelium in vivo. Am J Pathol 146: 1488–1497

    PubMed  CAS  Google Scholar 

  70. Moss NS, Benditt EP (1975) Human atherosclerotic plaque cells and leiomyoma cells: comparison of in vitro growth characteristics. Am J Pathol 78: 175–190

    PubMed  CAS  Google Scholar 

  71. Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95: 2266–2274

    Article  PubMed  CAS  Google Scholar 

  72. Jamal A, Bendeck M, Langille BL (1992) Structural changes and recovery of function after arterial injury. Arterioscler Thromb 12: 307–317

    Article  PubMed  CAS  Google Scholar 

  73. O’Brien ER, Alpers CE, Stewart DK, Ferguson M, Tran N, Gordon D, Benditt EP, Hinohara T, Simpson JB, Schwartz SM (1993) Proliferation in primary and restenotic coronary atherectomy tissue: implications for antiproliferative therapy. Circ Res 73: 223–231

    Article  PubMed  Google Scholar 

  74. Mintz GS, Douek PC, Bonner RF (1993) Intravascular ultrasound comparison of de novo and restenotic coronary artery lesions. J Am Coll Cardiol 21: 118A

    Google Scholar 

  75. Arbustini E, Grasso M, Diegoli M, Pucci A, Bramerio M, Ardissino D, Angoli L, de Servi S, Bramucci E, Mussini A (1991) Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical, and biochemical study. Am J Cardiol 68: 36B - 50B

    Article  PubMed  CAS  Google Scholar 

  76. Davies MJ (1992) Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation 85 (suppl 1): 119–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Japan

About this chapter

Cite this chapter

Schwartz, S.M. (1997). Remodeling: How Vessels Narrow. In: Maruyama, Y., Hori, M., Janicki, J.S. (eds) Cardiac-Vascular Remodeling and Functional Interaction. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67041-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67041-4_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67043-8

  • Online ISBN: 978-4-431-67041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics