Skip to main content

Influences of Coronary Venous Pressures on Left-Ventricular Function

  • Chapter
Cardiac-Vascular Remodeling and Functional Interaction

Summary

In this chapter, we present experimental evidence for the functional influences of the coronary venous system on cardiac performance. The drainage pattern of the canine venous system is described, and casts of the venous circulation establish that venous vascular volume is about twice that of the arterial vascular volume. Experimental evidence is presented demonstrating that coronary arterial flow, both after vasodilation and with intact vasoactivity, is reduced with elevated right heart pressures. Coronary collateral flow (in the presence of arterial occlusion) is also reduced with elevated right heart pressures. Experiments show that increasing left-ventricular volume in a vasodilated heart reduces coronary flow proportionally while there is practically no influence on flow in the vasoactive heart. Pressure interactions between the right heart and left-ventricular pressure are more pronounced in the vasodilated heart compared to the vasoactive heart and more prominent in a stiffer versus a compliant heart. Evidence is presented that elevated right heart pressures reduce the compliance of the left ventricle, which is even more pronounced in the vasodilated state. Finally, evidence for a “venous Gregg effect” is presented. Here we observed that an increase in right heart pressure resulted in an increase in the maximally generated pressure within the left ventricle, increased the maximum rate of change in left-ventricular pressure (index of contractility), and increased myocardial oxygen consumption. The studies suggest a prominent role for the venous circulation on cardiac function, which takes on greater importance in the failing heart when right heart pressures can be as high as 30 mmHg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tyberg JV (1992) Venous modulation of ventricular preload (editorial). Am Heart J 123: 1098–1104

    Article  PubMed  CAS  Google Scholar 

  2. Scharf SM, Bromberger-Barnea B (1973) Influence of coronary flow and pressure on cardiac function and coronary vascular volume. Am J Physiol 224: 918–925

    PubMed  CAS  Google Scholar 

  3. Watanabe J, Levine MJ, Bellotto F, Johnson R, Grossman W (1990) Effects of coronary venous pressure on left ventricular diastolic distensibility. Circ Res 67: 923–932

    Article  PubMed  CAS  Google Scholar 

  4. Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36: 753–760

    Article  PubMed  CAS  Google Scholar 

  5. Scheel KW, Mass H, Williams SE (1989) Collateral influence on pressure flow characteristics of the coronary circulation. Am J Physiol (Heart Circ Physiol 26 ) 257: H717 - H725

    Google Scholar 

  6. Scheel KW, Mass H, Gean JT (1993) Interactions of the coronary and collateral circulations. In: Schaper W (ed) Collateral circulation. Kluwer, Norwell, MA, pp 233260

    Google Scholar 

  7. Scheel KW, Williams SE, Parker JB (1990) Coronary sinus pressure has a direct effect on gradient for coronary perfusion. Am J Physiol (Heart Circ Physiol 27 ) 258: H1739–1744

    Google Scholar 

  8. Manor D, Williams S, Ator R, Bryant K, Scheel KW (1995) Modulation of coronary flow by left ventricular volume in the presence and absence of vasomotor tone. Am J Physiol 269: H2010 - H2016

    PubMed  CAS  Google Scholar 

  9. Gregg DE, Shipley RE (1947) Studies of the venous drainage of the heart. Am J Physiol 151: 13–25

    PubMed  CAS  Google Scholar 

  10. Hammond GL, Austen WG (1967) Drainage patterns of coronary arterial flow as determined from the isolated heart. Am J Physiol 212: 1435–1440

    PubMed  CAS  Google Scholar 

  11. Moir TW, Ecxkstein RW, Driscol TE (1963) Thebesian drainage of the septal artery. Circ Res 12: 212–219

    Article  Google Scholar 

  12. Pantely GA, Bristow JD, Ladley HD, Anselone CG (1988) Effect of coronary sinus occlusion on coronary flow, resistance, and zero flow pressure during maximum vasodilatation in swine. Cardiovasc Res 22: 79–86

    Article  PubMed  CAS  Google Scholar 

  13. Hood WB (1968) Regional venous drainage of the human heart. Br Heart J 30: 105–109

    Article  PubMed  Google Scholar 

  14. Scheel KW, Ingram LA, GordeyRL (1982) Relationship of coronary flow and perfusion territory in dogs. Am J Physiol (Heart Circ Physiol 12 ) 243: H738–H747

    Google Scholar 

  15. Eliasen P, Amtorp O, Tondevold E, Haunso S (1982) Regional blood flow, microvascular blood content and tissue haematocrit in canine myocardium. Cardivasc Res 16: 593–598

    Article  CAS  Google Scholar 

  16. Wu XS, Ewert DL, Lin YH, Ritman EL (1992) In vivo relation of intramyocardial blood volume to myocardial perfusion. Circulation 85: 730–737

    Article  PubMed  CAS  Google Scholar 

  17. Wusten B, Buss DD, Deist H, Schaper W (1977) Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res Cardiol 72: 636–650

    Article  PubMed  CAS  Google Scholar 

  18. Crystal GJ, Downey HF, Bashour FA (1981) Small vessel and total coronary blood volume during intracoronary adenosine. Am J Physiol (Heart Circ Physiol 10 ) 241: H194 - H201

    Google Scholar 

  19. Douglas JE, Greenfield JC Jr (1970) Epicardial coronary artery compliance in the dog. Circ Res 27: 921–929

    Article  PubMed  CAS  Google Scholar 

  20. Bassingthwaighte JB, Yipintsoi T, Harvey RB (1974) Microvasculature of the dog left ventricular myocardium. Microvasc Res 7: 229–249

    Article  PubMed  CAS  Google Scholar 

  21. O’Keefe DD, Hoffman JIE, Cheitlin R, O’Neil MJ, Allard JR, Shapkin E (1978) Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res 43: 43–51

    Article  PubMed  Google Scholar 

  22. Grayson J, Davidson JW, Fitzgerald-Finch A, Scott C (1974) The function morphology of the coronary microcirculation in the dog. Microvasc Res 8: 20–43

    Article  PubMed  CAS  Google Scholar 

  23. Hyde DM, Buss DD (1986) Morphometry of the coronary microvasculature of the canine left ventricle. Am J Anat 177: 415–425

    Article  PubMed  CAS  Google Scholar 

  24. Levy BI, Samuel JL, Tedgui A, Kotelianski V, Marotte F, Poitevin P, Chadwick RS (1988) Intramyocardial blood volume measurment in the left ventricle of rat arrested hearts. In: Brun P, Chadwick RS, Levy BI (eds) Cardiovascular dynamics and models. Editions INSERM, Paris, pp 65–71

    Google Scholar 

  25. Kassab GS, Lin DH, Fung YC (1994) Morphometry of pig coronary venous system. Am J Physiol (Heart Circ Physiol 36 ) 267: H2100 - H2113

    Google Scholar 

  26. Farhi ER, Klocke FJ, Mates RE, Kumar K, Judd RM, Canty JM Jr, Satoh S, Sekovski B (1991) Tone-dependent waterfall behavior during venous pressure elevation in isolated canine hearts. Circ Res 68: 392–401

    Article  PubMed  CAS  Google Scholar 

  27. Uhlig P, Baer R, Vlahakes G, Hanley F, Messina L, Hoffman J (1984) Arterial and venous coronary pressure-flow relations in anesthetized dogs. Evidence for a vascular waterfall in epicardial coronary veins. Circ Res 55: 238–248

    Google Scholar 

  28. Bellamy RF, Lowensohn HS, Ehrlich W, Baer RW (1980) Effect of coronary sinus occlusion on coronary pressure-flow relations. Am J Physiol (Heart Circ Physiol 8 ) 239: H57 - H64

    Google Scholar 

  29. Izrailtyan I, Frasch HF, Kresh JY (1994) Effects of venous pressure on coronary circulation and intramyocardial fluid mechanics. Am J Physiol (Heart Circ Physiol 36 ) 267: H1002 - H1009

    Google Scholar 

  30. Laine GA (1987) Change in (dP/dt)max as an index of myocardial microvascular permeability. Circ Res 61: 203–208

    Article  PubMed  CAS  Google Scholar 

  31. Johnson PC (1964) Review of previous studies and current theories of autoregulation. Circ Res 15 (suppl I): 2–9

    PubMed  Google Scholar 

  32. Yuan Y, Granger HJ, Zawieja DC, Chilian WM (1992) Flow modulates coronary venular permeability by a nitric oxide-related mechanism. Am J Physiol (Heart Circ Physiol) 263: H641 - H646

    CAS  Google Scholar 

  33. Kuo L, Arko F, Chilian WM, Davis MJ (1993) Coronary venular responses to flow and presure. Circ Res 72: 607–615

    Article  PubMed  CAS  Google Scholar 

  34. Kuo L, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol (Heart Circ Physiol) 259: H1063 - H1070

    CAS  Google Scholar 

  35. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML (1989) Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol (Heart Circ Physiol) 256: H383 - H390

    CAS  Google Scholar 

  36. Little WC, Badke FR, O’Rourke RA (1984) Effect of right ventricular pressure on the end-diastolic left ventricular pressure-volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ Res 54: 719–730

    Article  PubMed  CAS  Google Scholar 

  37. Lorell BH, Palacios I, Daggett WM, Jacobs ML, Fowler BN, Newell JB (1981) Right ventricular distension and left ventricular compliance. Am J Physiol (Heart Circ Physiol 9 ) 240: H87 - H98

    Google Scholar 

  38. Maruyama Y, Ashikawa K, Isoyama S, Kanatsuka H, Ino-Oka E, Takishima T (1982) Mechanical Interactions between four heart chambers with and without the pericardium in canine hearts. Circ Res 50: 86–100

    Article  PubMed  CAS  Google Scholar 

  39. Taylor RR, Covell JW, Sonnenblick EH, Ross JJ (1967) Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol 213: 711–718

    PubMed  CAS  Google Scholar 

  40. Abe H, Holt W, Watters TA, Wu S, Parmley WW, Schiller N, Higgins C, WikmanCoffelt J (1988) Mechanics and energetics of overstretch: the relationship of altered left ventricular volume to the Frank-Starling mechanism and phosphorylation potential. Am Heart J 116: 447–454

    Article  PubMed  CAS  Google Scholar 

  41. Hoffman JIE, Spaan JAE (1990) Pressure-flow relations in coronary circulation. Physiol Rev 70: 331–390

    PubMed  CAS  Google Scholar 

  42. Klocke FJ, Ellis AK (1980) Control of coronary blood flow. Annu Rev Med 31: 489–508

    Article  PubMed  CAS  Google Scholar 

  43. Ovize M, Kloner RA, Przyklenk K (1994) Stretch preconditions canine myocardium. Am J Physiol (Heart Circ Physiol 35 ) 266: H137 - H146

    Google Scholar 

  44. Holt W, Auffermann W, Wu ST, Parmley WW, Wikman-Coffelt J (1991) Mechanisms for depressed cardiac function in left ventricular volume overload. Am Heart J 121: 531–537

    Article  PubMed  CAS  Google Scholar 

  45. Manor D, Williams S, Ator R, Bryant K, Scheel KW (1995) Left ventricular mechanics in arrested dog heart: effects of ventricular interaction and vascular volumes. Am J Physiol (Heart Circ Physiol 37 ) 268: H2125 - H2132

    Google Scholar 

  46. Resar J, Livingston JZ, Halperin HR, Sipkema P, Krams R, Yin FCP (1990) Effect of wall stretch on coronary hemodynamics in isolated canine interventricular septum. Am J Physiol (Heart Circ Physiol 28 ) 259: H1869 - H1880

    Google Scholar 

  47. Rubanyi GM (1993) Mechanoreception by the vascular wall. In: Rubanyi GM (eds) Mechanoreception by the vascular wall. Futura, Mount Kosco, pp xi-xx

    Google Scholar 

  48. Shannon RP, Komamura K, Shen Y, Bishop SP, Vatner SF (1993) Impaired regional subendocardial coronary flow reserve in conscious dogs with pacing-induced heart failure. Am J Physiol (Heart Circ Physiol 34 ) 265: H801 - H809

    Google Scholar 

  49. Doty DB, Wright CB, Hiratzka LF, Eastham CL, Marcus ML (1984) Coronary reserve in volume-induced right ventricular hypertrophy from atrial septal defect. Am J Cardiol 54: 1059–1063

    Article  PubMed  CAS  Google Scholar 

  50. Marcus ML, Doty DB, Hiratzka LF, Wright CB, Eastham CL (1982) Decreased coronary reserve—a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med 307: 1362–1367

    Article  PubMed  CAS  Google Scholar 

  51. Alcorn JM (1991) Left ventricular diastolic dysfunction presenting as ascites: the importance of clinically assessing central venous pressure. J Clin Gastroenterol 13: 8385

    Article  Google Scholar 

  52. Rackley CE, Russell RO (1972) Left ventricular function in acute myocardial infarction and its clinical significance. Circulation 45: 231–244

    Article  PubMed  CAS  Google Scholar 

  53. Cantin B, Rouleau JR (1992) Myocardial tissue pressure and blood flow during coronary sinue pressure modulation in anesthetized dogs. J Appl Physiol 73: 2184–2191

    PubMed  CAS  Google Scholar 

  54. Ilbawi MN, Idriss FS, Muster AJ, DeLeon SY, Berry TE, Duffy CE, Paul MH (1986) Effects of elevated coronary sinus pressure on left ventricular function after the Fontan operation. An experimental and clinical correlation. J Thorac Cardiovasc Surg 92: 231237

    Google Scholar 

  55. Matsuhashi H, Hasebe N, Kawamura Y (1992) The effect of intermittent coronary sinus occlusion on coronary sinus pressure dynamics and coronary arterial flow. Jpn Circ J 56: 272–285

    Article  PubMed  CAS  Google Scholar 

  56. Rouleau J, White M (1985) Effects of coronary sinus pressure elevation on coronary blood flow distribution in dogs with normal preload. Can J Physiol Pharmacol 63: 787–797

    Article  PubMed  CAS  Google Scholar 

  57. Scheel KW, Mass HI, Williams SE (1989) Pressure-flow characteristics of coronary collaterals in dogs. Am J Physiol (Heart Circ Physiol 25 ) 256: H441 - H445

    Google Scholar 

  58. Scheel KW, Daulat G, Williams SE (1990) Functional anatomical site of intramural collaterals in the dog. Am J Physiol (Heart Circ Physiol 28 ) 259: H707 - H711

    Google Scholar 

  59. Manor D, Williams S, Ator R, Bryant K, Scheel KW (1994) Reduced collateral perfusion is a direct consequence of elevated right atrial pressure. Am J Physiol (Heart Circ Physiol 36 ) 267: H1151 - H1156

    Google Scholar 

  60. Eng C, Kirk ES (1984) Flow into ischemic myocardium and across coronary collateral vessels is modulated by a waterfall mechanism. Circ Res 55: 10–17

    Article  PubMed  CAS  Google Scholar 

  61. Wyatt D, Lee J, Downey JM (1982) Determination of coronary collateral blood flow by a load line analysis. Circ Res 50: 663–670

    Article  PubMed  CAS  Google Scholar 

  62. Vogel WM, Apstein CS, Briggs LL, Gaasch WH, Ahn J (1982) Acute alterations in left ventricular diastolic chamber stiffness: role of the “erectile” effect of coronary arterial pressure and flow in normal and damaged hearts. Circ Res 51: 465–478

    Article  PubMed  CAS  Google Scholar 

  63. Salisbury PF, Cross CE, Reiben PA (1960) Influence of coronary artery pressure upon myocardial elasticity. Circ Res 8: 794–800

    Article  PubMed  CAS  Google Scholar 

  64. Cross CE, Rieben PA, Salisbury PF (1961) Influence of coronary perfusion and myocardial edema on pressure-volume diagram of left ventricle. Am J Physiol 201: 102–108

    PubMed  CAS  Google Scholar 

  65. Fung YC (1993) Biomechanics: mechanical properties of living tissue. Springer-Verlag, Berlin Heidelberg New York, pp 41–57

    Google Scholar 

  66. Grossman W, McLauria WT (1976) Diastolic properties of the left ventricle. Ann Intern Med 84: 316–326

    PubMed  CAS  Google Scholar 

  67. Rankin JS, Arentzen CE, McHale PA, Ling D, Anderson RW (1977) Viscoelastic properties of the diastolic left ventricle in the conscious dog. Circ Res 41: 37–45

    Article  PubMed  CAS  Google Scholar 

  68. Glantz SA (1980) Computing indices of diastolic stiffness has been counterproductive. Fed Proc 39: 162–168

    PubMed  CAS  Google Scholar 

  69. May-Newman K, Omens JH, Pavelec RS, McCulloch AD (1994) Three-dimensional transmural mechanical interaction between the coronary vasculature and passive myocardium in the dog. Circ Res 74: 1166–1178

    Article  PubMed  CAS  Google Scholar 

  70. McCulloch AD, Hunter PJ, Smaill BH (1992) Mechanical effects of coronary perfusion in the passive canine left ventricle. Am J Physiol (Heart Circ Physiol 31 ) 262: H523 - H530

    Google Scholar 

  71. Olsen CO, Jones RN, Attarian DE, Hill RC, Sink JD, Chitwood Jr. WR, Wechsler AS (1979) Relationship of LV compliance to coronary artery perfusion pressure in potassium-arrested canine heart during cardiopulmonary bypass. Cardiac Surg Forum 30: 246–247

    CAS  Google Scholar 

  72. Chilian WM, Marcus ML (1984) Coronary venous outflow persists after cessation of coronary arterial inflow. Am J Physiol (Heart Circ Physiol 16 ) 247: H984 - H990

    Google Scholar 

  73. Farhi ER, Canty JM, Klocke FJ (1991) Dissociation of diastolic pressure-segment length and pressure-wall thickness relations during vasodilation in the conscious dog. J Am Coll Cardiol 18: 850–857

    Article  PubMed  CAS  Google Scholar 

  74. Verrier ED, Bristow JD, Hoffman JIE (1986) Coronaryvasodilation shifts the diastolic pressure-dimension curve of the left ventricle. J Mol Cell Cardiol 18: 579–594

    Article  PubMed  CAS  Google Scholar 

  75. Gregg DE (1963) Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res 13: 497–500

    Article  PubMed  CAS  Google Scholar 

  76. Arnold GD, Morgenstern C, Lochner W (1970) The autoregulation of the heart work by the coronary perfusion pressure. Pflügers Arch 321: 34–55

    Article  PubMed  CAS  Google Scholar 

  77. Schipke JD, Stocks I, Sunderdiek U, Arnold G (1993) Effect of changes in aortic pressure and in coronary arterial pressure on left ventricular geometry and function Anrep vs. gardenhose effect. Basic Res Cardiol 88: 621–627

    Article  PubMed  CAS  Google Scholar 

  78. Katz AM (1991) Physiology of the heart. Raven, New York, pp 136–137, 371

    Google Scholar 

  79. Bai XJ, Iwamoto T, Williams AG, Fan WL, Downey HF (1994) Coronary pressure-flow autoregulation protects myocardium from pressure-induced changes in oxygen consumption. Am J Physiol (Heart Circ Physiol 35 ) 266: H2359 - H2368

    Google Scholar 

  80. Schulz R, Guth BD, Heusch G (1991) No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs. Evidence against the Gregg phenomenon. Circulation 83: 1390–1403

    Google Scholar 

  81. Abel RM, Reis RL (1970) Effects of coronary blood flow and perfusion pressure on left ventricular contractility in dogs. Circ Res 27: 961–971

    Article  PubMed  CAS  Google Scholar 

  82. Schouten VJA, Allaart CP, Westerhof N (1992) Effect of perfusion pressure on force of contraction in thin papillary muscles and trabeculae from rat heart. J Physiol (Camb) 451: 585–604

    CAS  Google Scholar 

  83. Kitakaze M, Marban E (1989) Cellular mechanisms of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol (Camb) 414: 455472

    Google Scholar 

  84. Spaan JAE (1985) Coronary diastolic pressure-flow relation and zero-flow pressure explained on the basis of intramyocardial compliance. Circ Res 56: 293–309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Japan

About this chapter

Cite this chapter

Scheel, K.W., Manor, D., Bryant, K. (1997). Influences of Coronary Venous Pressures on Left-Ventricular Function. In: Maruyama, Y., Hori, M., Janicki, J.S. (eds) Cardiac-Vascular Remodeling and Functional Interaction. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67041-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67041-4_26

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67043-8

  • Online ISBN: 978-4-431-67041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics