Skip to main content

Optimal Afterload that Maximizes External Work and Optimal Heart that Minimizes O2 Consumption

  • Chapter
Cardiac-Vascular Remodeling and Functional Interaction

Summary

We examined the optimality of ventriculoarterial coupling from the point of view of energy efficiency. We defined the optimal afterload as that which maximizes external work. A theoretical analysis indicated, for a given end-diastolic volume, that external work becomes maximal when effective arterial elastance (E a ) equals end-systolic elastance (E es ). The ratio of external work to its maximum value was used to indicate the optimality of the afterload, Q load . We defined the optimal heart as that which minimizes myocardial oxygen consumption for a given mean arterial pressure and cardiac output under a constant end-diastolic volume. This is accomplished when E a /E es is about 0.4. The ratio of minimum oxygen consumption, which is derived theoretically, to actual oxygen consumption is used to indicate the optimality of the heart, Q heart . In chronically instrumented dogs, E a /E es ranged from 0.39 to 1.00 (0.69 ± 0.26 [SDI]. Q load was 0.93 ± 0.08, suggesting that the external work of the left ventricle was nearly maximum at this condition. Similarly, Q heart was 0.98 ± 0.01, indicating that myocardial oxygen consumption was almost minimum. When dogs ran on a treadmill, their heart rate and cardiac output doubled. E es and E a increased moderately; E a / E es , however, remained unchanged. Thus, despite dramatic changes in hemodynamic conditions, external work remained nearly maximum and oxygen consumption was minimum. In contrast, experimental left heart dysfunction increased E a /E PS , which, in turn, decreased Q heart . We concluded that the ventriculoarterial coupling is nearly optimal under physiological stress. It is, however, no longer optimal for pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sagawa K, Maughan WL, Suga H, Sunagawa K (1988) Cardiac contraction and the pressure-volume relationship. Oxford, New York

    Google Scholar 

  2. Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35: 117 - 126

    Article  PubMed  CAS  Google Scholar 

  3. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32: 314 - 332

    Article  PubMed  CAS  Google Scholar 

  4. Sunagawa K, Maughan WL, Sagawa K (1985) Stroke volume effect of changing arterial impedance over selected frequency range. Am J Physiol 248: H477 - H484

    PubMed  CAS  Google Scholar 

  5. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine left ventricle. Am J Physiol 245: H773 - H780

    PubMed  CAS  Google Scholar 

  6. Sunagawa K, Sagawa K, Maughan WL (1984) Ventricular interaction with the loading system. Ann Biomed Eng 12: 163 - 189

    Article  PubMed  CAS  Google Scholar 

  7. Sunagawa K, Maughan WL, Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56: 586 - 595

    Article  PubMed  CAS  Google Scholar 

  8. Sugimachi M, Todaka K, Sunagawa K, Nakamura M (1990) Optimal afterload for the heart vs. optimal heart for the afterload. Front Med Biol Eng 2: 217 - 221

    PubMed  CAS  Google Scholar 

  9. Suga H (1979) Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 236:H498-HSO5

    Google Scholar 

  10. Khalafbeigui F, Suga H, Sagawa K (1979) Left ventricular pressure-volume area correlates with oxygen consumption. Am J Physiol 237: H566 - H569

    PubMed  CAS  Google Scholar 

  11. Suga H, Hayashi T, Shirahata M (1981) Ventricular pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 240: H39 - H44

    PubMed  CAS  Google Scholar 

  12. Suga H, Yamamura Y, Nozawa T (1987) Prospective prediction of 02 consumption from pressure-volume area (PVA) in dog heart. Am J Physiol 252: H1258 - H1268

    PubMed  CAS  Google Scholar 

  13. Hayashida K, Sunagawa K, Noma M, Sugimachi M, Ando H, Nakamura M (1992) Mechanical matching of the left ventricle with the arterial system in exercising dogs. Circ Res 71: 481 - 489

    Article  PubMed  CAS  Google Scholar 

  14. Sunagawa K, Hayashida K, Sugimachi M, Todaka K, Kubota T, Itaya R, Chishaki A, Takeshita A (1991) Optimal left ventricle versus optimal afterload. In: Sasayama S, Suga H (eds) Recent progress in failing heart syndrome. Springer-Verlag, Tokyo, pp 161 - 186

    Chapter  Google Scholar 

  15. Sunagawa K, Hayashida K, Sugimachi M, Noma M, Ando H, Tajimi T, Tomoike H, Nose Y, Nakamura M (1989) Ventriculoarterial matching in exercising dogs. In: Sideman S, Beyar R (eds) Analysis and simulation of the cardiac system—ischemia. CRC, Boca Raton, pp 89 - 98

    Google Scholar 

  16. Sunagawa K, Yamada A, Senda Y, Kikuchi Y, Nakamura M (1980) Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans Biomed Eng 27: 299 - 305

    Article  PubMed  CAS  Google Scholar 

  17. Asoh T, Oe M, Morita S, Tanaka J, Tokunaga K, Sunagawa K (1987) Single beat estimation of end-systolic pressure-volume relation of in situ dog heart (abstract). Jpn Circ J 51: 767

    Google Scholar 

  18. Takeuchi M, Igarashi Y, Tomimoto S, Odake M, Hayashi T, Tsukamoto T, Hata K, Takaoka H, Fukuzaki H (1991) Single beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 83: 202 - 212

    Article  PubMed  CAS  Google Scholar 

  19. Todaka K, Sugimachi M, Sunagawa K, Ando H (1989) Do the heart and arterial system of conscious dogs operate at the optimal point in hemorrhage and volume load? (abstract). Circulation 80 (suppl II): II - 248

    Google Scholar 

  20. Sugimachi M, Sunagawa K, Todaka K, Hayashida K, Noma M, Egashira S, Nose Y (1988) Ventriculo-arterial matching in conscious dogs with left ventricular dysfunction (abstract). Circulation 78 (suppl II): II - 523

    Google Scholar 

  21. Burkhoff D, Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250: R1021 - R1027

    PubMed  CAS  Google Scholar 

  22. Asanoi H, Kameyama T, Ishizaka S, Nozawa T, Inoue H (1996) Energetically optimal left ventricular pressure for the failing human heart. Circulation 93: 67 - 73

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Japan

About this chapter

Cite this chapter

Sugimachi, M., Sunagawa, K. (1997). Optimal Afterload that Maximizes External Work and Optimal Heart that Minimizes O2 Consumption. In: Maruyama, Y., Hori, M., Janicki, J.S. (eds) Cardiac-Vascular Remodeling and Functional Interaction. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67041-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67041-4_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67043-8

  • Online ISBN: 978-4-431-67041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics