Skip to main content

Modifications of Stress Response in Mammalian Cells Incubated at Low Temperature, Thermotolerant Cells, and Neuronal Cells During Differentiation

  • Chapter
Book cover Thermotherapy for Neoplasia, Inflammation, and Pain
  • 514 Accesses

Summary

The stress response is induced by a variety of environmental and physiological stresses, and it is modulated under various environmental and physiological conditions. In this study I demonstrated that the stress response in mammalian cells is modified by low-temperature incubation, the thermotolerant state, and the differentiation state of cells. First, the culture temperature of cells modifies induction of the stress response. Mouse FM3A cells maintained at low temperatures do not synthesize HSP70, although the cells maintained at 37°C do so. Low culture temperature also modulates the thermal sensitivity of cells. Because the thermosensitivity of mammalian cells is enhanced by transient incubation at low temperatures, cooling tumor tissues transiently before trials of clinical hyperthermia may be useful for cancer therapy. In addition, two kinds of stressor induce the stress response dependent on or independently of culture temperature. Second, the thermotolerant state of cells modulates induction of the stress response. Upon exposure to heat-shock and other stresses, nonthermotolerant HeLa cells transiently synthesize a large amount of HSP70, whereas thermotolerant cells synthesize only a small amount. The high HSP70 content in the thermotolerant cells seems to regulate the activity of heat shrek factor 1 negatively. Third, rat PC12 cells, which change into differentiated neuronal cells in response to nerve growth factor, reduce their stress response during neuronal differentiation. The diminished HSP70 expression in the differentiated neuronal cells may explain the high sensitivity of these cells to pathophysiological stressors. The significance of modulating the stress response is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62: 349–384

    Google Scholar 

  2. Lis J, Wu C (1993) Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74: 1–4

    Article  PubMed  CAS  Google Scholar 

  3. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259: 1409–1410

    Article  PubMed  CAS  Google Scholar 

  4. Baler R, Dahl G, Voellmy R (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock tran- 20. scription factor HSF1. Mol Cell Biol 13: 2486–2496

    PubMed  CAS  Google Scholar 

  5. Xia W, Voellmy R (1997) Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor 21. trimers. J Biol Chem 272: 4094–4102

    Article  PubMed  CAS  Google Scholar 

  6. Perisic O, Xiao H, Lis JT (1989) Stable binding of Drosophila heat shock factor to head-to-head and tailto-tail repeats of conserved 5 bp recognition unit. Cell 22. 59: 797–806

    Article  Google Scholar 

  7. Morimoto RI, Sarge KD, Abravaya K (1992) Transcrip- 23. tional regulation of heat shock genes: a paradigm for inducible genomic responses. J Biol Chem 267: 21987–21990

    PubMed  CAS  Google Scholar 

  8. Mosser DD, Duchaine J, Massie B (1993) The DNA- 24. binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 13: 5427–5438

    PubMed  CAS  Google Scholar 

  9. Zou J, Guo Y, Guettouche T, et al (1998) Repression of heat shock transcription factor HSF1 activation by hsp90 (hsp90 complex) that forms a stress-sensitive complex with HSF1. Cell 94: 471–480

    Article  PubMed  CAS  Google Scholar 

  10. Matsumoto Y, Yasuda H, Mita S, et al (1980) Evidence for the involvement of Hl histone phosphorylation in chromosome condensation. Nature 284: 181–183

    Article  PubMed  CAS  Google Scholar 

  11. Finley D, Ciechanover A, Varshaysky A (1984) Thermo-lability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37: 43–55

    Article  PubMed  CAS  Google Scholar 

  12. Ciechanover A, Finley D, Varshaysky A (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37: 57–66

    Article  PubMed  CAS  Google Scholar 

  13. Hatayama T, Tsujioka K, Wakatsuki T, et al (1991) Induction of heat shock protein and thermal sensitivity of mammalian cells maintained at low culture temperature. Biochem Int 24: 467–474

    PubMed  CAS  Google Scholar 

  14. Hatayama T, Tsujioka K, Wakatsuki T, et al (1992) Effects of low culture temperature on the induction of hsp70 mRNA and the accumulation of hsp70 and hsp105 in mouse FM3A cells. J Biochem 111: 484–490

    PubMed  CAS  Google Scholar 

  15. Hatayama T, Tsujioka K, Wakatsuki T, et al (1992) Effects of culture temperature on the expression of heat-shock proteins in murine ts85 cells. Biochim Biophys Acta 1135: 253–261

    Article  PubMed  CAS  Google Scholar 

  16. Hatayama T, Masaoka T (1995) Inhibition mechanism of HSP70 induction in murine FM3A cells maintained at low culture temperature. Biochim Biophys Acta 1269: 243–252

    Article  PubMed  Google Scholar 

  17. Abravaya K, Myers MP, Murphy SP, et al (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6: 1153–1164

    Article  PubMed  CAS  Google Scholar 

  18. Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117: 1151–1159

    Article  PubMed  CAS  Google Scholar 

  19. Beckmann RP, Mizzen LA, Welch WJ (1990) Interaction of hsp70 with newly synthesized proteins: implications for folding and assembly. Science 248: 850–854

    Article  PubMed  CAS  Google Scholar 

  20. Hatayama T, Takeuchi S, Yamazaki Y, et al (1995) Thermosensitization of murine FM3A cells by transient incubation at low temperatures. J Radiat Res 36: 248–257

    Article  PubMed  CAS  Google Scholar 

  21. Hatayama T, Hayakawa M (1999) Differential temperature dependency of chemical stressors in HSF1-mediated stress response in mammalian cells. Biochem Biophys Res Commun 265: 763–769

    Article  PubMed  CAS  Google Scholar 

  22. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66: 191–197

    Article  PubMed  CAS  Google Scholar 

  23. McDuffee AT, Senisterra G, Huntley S, et al (1997) Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response. J Cell Physiol 171: 143–151

    Article  PubMed  CAS  Google Scholar 

  24. Klemperer NS, Pickart CM (1989) Arsenite inhibits two steps in the ubiquitin-dependent proteolytic pathway. J Biol Chem 264: 19245–19252

    PubMed  CAS  Google Scholar 

  25. Liu H, Lightfoot R, Stevems JL (1996) Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 271: 4805–4812

    Article  PubMed  CAS  Google Scholar 

  26. Hatayama T, Kano E, Taniguchi Y, et al (1991) Role of heat-shock proteins in the induction of thermotolerance in Chinese hamster V79 cells by heat and chemical agents. Int J Hypertherm 7: 61–74

    Article  CAS  Google Scholar 

  27. Lewis MJ, Pelham HRB (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J 4: 3137–3143

    PubMed  CAS  Google Scholar 

  28. Hatayama T, Asai Y, Wakatsuki T, et al (1993) Regulation of hsp70 induction in thermotolerant HeLa cells. Biochim Biophys Acta 1179: 109–116

    Article  PubMed  CAS  Google Scholar 

  29. Hatayama T, Asai Y, Wakatsuki T, et al (1993) Regulationof hsp70 synthesis induced by cupric sulfate and zinc sulfate in thermotolerant HeLa cells. J Biochem 114: 592–597

    PubMed  CAS  Google Scholar 

  30. Vass K, Welch WJ, Nowak TS (1988) Localization of 70 kDa stress protein induction in gerbil brain aft ischemia. Acta Neuropathol (Berl) 77: 128–135

    CAS  Google Scholar 

  31. Marini AM, Kozuka M, Lipsky RH, et al (1990) 70 Kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: comparison with immunocytochemical localization after hyper thermia in vivo. J Neurochem 54: 1509–1516

    Google Scholar 

  32. Manzerra P, Brown IA (1992) Distribution of constitu-tive-and hyperthermia-inducible heat shock mRNA species (hsp70) in the Purkinje layer of the rabbit cere bellum. Neurochem Res 17: 559–564

    Article  PubMed  CAS  Google Scholar 

  33. Sprang GK, Brown IR (1987) Selective induction of a heat shock gene in fibre tracts and cerebellar neurons of the rabbit brain detected by in situ hybridization. Mol Brain Res 3: 89–93

    Article  Google Scholar 

  34. Nishimura RN, Dwyer BE, Clegg K, et al (1991) Com- parison of the heat shock response in cultured cortical neurons and astrocytes. Mol Brain Res 9: 39–45

    Article  PubMed  CAS  Google Scholar 

  35. Mathur SK, Sistonen L, Brown LR, et al (1994) Deficient induction of human hsp70 heat shock gene transcription in Y79 retinoblastoma cells despite activation of heat shock factor 1. Proc Natl Acad Sci USA 91: 8695–8699

    Article  PubMed  CAS  Google Scholar 

  36. Hatayama T, Takahashi H, Yamagishi N (1997) Reduced induction of HSP70 in PC12 cells during neuronal differ-entiation. J Biochem 122: 904–910

    Article  PubMed  CAS  Google Scholar 

  37. Liu A, Choi H, Bae-Lee MS (1990) Decreased heat shock response upon adipose differentiation of 3T3–L1 cells. Biochem Biophys Res Commun 172: 1–7

    Article  PubMed  CAS  Google Scholar 

  38. Yufu Y, Nishijima J, Takahira H, et al (1989) Down- regulation of a MT 90,000 heat shock cognate protein during granulocytic differentiation in HL60 leukemia cells. Cancer Res 49: 2405–2408

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Hatayama, T. (2001). Modifications of Stress Response in Mammalian Cells Incubated at Low Temperature, Thermotolerant Cells, and Neuronal Cells During Differentiation. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_41

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics