Skip to main content

Integration of Spatial Localization Cues - Auditory Processing for a Hearing Robot -

  • Conference paper
Enabling Society with Information Technology
  • 128 Accesses

Abstract

In this article, we describe the auditory system for a multimodal mobile robot. The system contains four microphones that are spatially arranged to form Cartesian coordinates to localize sound azimuths and elevations. Different pairs of microphone will provide localization cues for three orthogonal dimensions. By using the top-mounted microphone, elevations of sound sources can also be localized based on the time difference and intensity difference cues. Different methods of spatial cue integration are proposed and compared. By incorporate the model of the precedence effect, the influence of echoes and reverberations are inhibited. Other auditory functions such as sound source separation, sound understanding, and 3D sound reproduction are expected to be developed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jie Huang. Spatial sound processing and a hearing robot. In Proc. Int. Conf. Information Society in the 21st Century,pages 281–287, Aizu-Wakamatsu, November 2000. U. Aizu.

    Google Scholar 

  2. J. Huang, T. Supaongprapa, I. Terakura, F. Wang, N. Ohnishi, and N. Sugie. A model based sound localization system and its application to robot navigation. Robotics and Autonomous Systems, 27 (4): 199–209, 1999.

    Article  Google Scholar 

  3. J. Huang, N. Ohnishi, and N. Sugie. Building ears for robots: Sound localization and separation. Artificial Life and Robotics, 1 (4): 157–163, 1997.

    Article  Google Scholar 

  4. J. Huang, N. Ohnishi, X. Guo, and N. Sugie. Echo avoidance in a computation model of the precedence effect. Speech Communication, 27 (3–4): 223–233, April 1999.

    Article  Google Scholar 

  5. J. Huang, N. Ohnishi, and N. Sugie. Sound localization in reverberant environment based on the model of the precedence effect. IEEE Trans. Instrum. and Meas., 46 (4): 842–846, August 1997.

    Article  Google Scholar 

  6. J. Huang, N. Ohnishi, and N. Sugie. Spatial localization of sound sources: Azimuth and elevation estimation. In Proc. Instrum. Meas. Technol. Conf.,pages 330–333, St. Paul, May 1998. IEEE.

    Google Scholar 

  7. William L. Martens. Pseudophonic listening in reverberant environments: Implications for optimizing auditory display for the human user of a telerobotic listening system. In Proc. Int. Conf. Information Society in the 21st Century,pages 269–275, Aizu-Wakamatsu, November 2000. U. Aizu.

    Google Scholar 

  8. M. Kawamoto, K. Matsuoka, and N. Ohnishi. Real-would blind separation of non-stationary signals. In Proc. Int. Conf. Information Society in the 21st Century,Aizu-Wakamatsu, November 2000. U. Aizu.

    Google Scholar 

  9. A. S. Bregman. Auditory Scene Analysis: The Perceptual Organization of Sound. The MIT Press, London, 1990.

    Google Scholar 

  10. M. Cooke. Modeling Auditory Processing and Organisation. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  11. D. P. W. Ellis. A computer model of psychoacoustic grouping rules. In Proc. 12th Int. Conf. on Pattern Recognition, 1994.

    Google Scholar 

  12. T. Nakatani, H. G. Okuno, and T. Kawabata. Multi-agent based harmonic stream segregation for auditory scene analysis. Journal Japanese Society for Artificial Intelligence, 10 (2): 68–77, March 1995.

    Google Scholar 

  13. K. Yoshida. Interaction between different primary cues for sound integration and segregation. Graduation thesis, Univ. Aizu, 2001.

    Google Scholar 

  14. J. Blauert. Spatial hearing: the psychophysics of human sound localization. The MIT Press, London, revised edition, 1997.

    Google Scholar 

  15. T. Takahashi and M. Konishi. Selectivity for interaural time difference in the owl’s midbrain. J. Neuroscience, 6 (12): 3413–3422, 1986.

    Google Scholar 

  16. K. Saberi and D. R. Perrott. Lateralization thresholds obtained under conditions in which the precedence effect is assumed to operate. J. Acoust. Soc. Am., 87: 1732–1737, 1990.

    Article  Google Scholar 

  17. H. Wallach, E. B. Newman, and M. R. Rosenzweig. The precedence effect in sound localization. J. Psychol. Am., 62 (3): 315–336, 1949.

    Article  Google Scholar 

  18. W. A. Yost. The precedence effect: Revisited. J. Acoust. Soc. Am., 76: 1377 1383, 1984.

    Google Scholar 

  19. P. M. Zurek. The precedence effect and its possible role in the avoidance of interaural ambiguities. J. Acoust. Soc. Am., 67: 952–964, 1980.

    Article  Google Scholar 

  20. N. V. Franssen. Eigenschaften des naturlichen Richtungshorens and ihre Anwendung auf die Stereophonie (The properties of natural directional hearing and their application to stereophony). In Proc. 3rd Int. Congr. Acoustics, volume 1, pages 787–790, 1959.

    Google Scholar 

  21. H. Haas. Uber den eingluss eines einfachechos auf die horsamkeit von sprache. Acustica, 1:49–58, 1951. English translation in: “The influence of a single echo on the audibility of speech”, J. Audio Eng. Soc., Vol. 20, pp. 146–159, (1972).

    Google Scholar 

  22. Y. Utsuno. Computational evaluation for the ea model of the precedence effect. Graduation thesis, Univ. Aizu, 2000.

    Google Scholar 

  23. R. O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas and Propagation, AP-34(3): 276–280, 1986.

    Google Scholar 

  24. P. Stoica and K. C. Sharman. Maximum likelihood method for direction-ofarrival estimation. IEEE Trans. Acoust., Speech, Signal Processing, ASSP38(7): 1131–1143, 1990.

    Google Scholar 

  25. T. Goto. A weighted cross correlation method for sound localization in reverberant environments. Graduation thesis, Univ. Aizu, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Japan

About this paper

Cite this paper

Huang, J. (2002). Integration of Spatial Localization Cues - Auditory Processing for a Hearing Robot -. In: Jin, Q., Li, J., Zhang, N., Cheng, J., Yu, C., Noguchi, S. (eds) Enabling Society with Information Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66979-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66979-1_19

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66981-4

  • Online ISBN: 978-4-431-66979-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics