Skip to main content

Slow Intrinsic Optical Signals in Rat Spinal Cord Slices and Their Modulation by Low-Frequency Stimulation

  • Conference paper
Slow Synaptic Responses and Modulation
  • 195 Accesses

Abstract

The slow synaptic response in the spinal dorsal horn (DH) was originally found by Urban and Randic (1984). Tetanic stimulation of high-threshold primary afferent fibers in the dorsal root (DR) was found to induce a slow depolarization associated with spike and excitatory postsynaptic potential (epsp) discharges in the DH neurons in a slice preparation. Bath application of substance P, the putative pain transmitter/modulator, was shown to mimic the slow synaptic response. Since then, evidence has accumulated that the slow synaptic response lasting for more than 1 mm might take a critical role in nociceptive information transmission (Randic et al.1987; Urban et al.1994; Yoshimura 1996). However, some of the important characteristics including the precise site of cells generating slow synaptic responses and the induction mechanisms are still unclear primarily due to the methodological limitations of intracellular recording techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew RD, MacVicar BA (1994) Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neurosci 62:371–383

    Article  CAS  Google Scholar 

  • Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462

    Article  PubMed  CAS  Google Scholar 

  • Federico P, Borg SG, SalkausKus AG, et al (1994) Mapping patterens of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig. Neurosci 58:461–480

    Article  CAS  Google Scholar 

  • Grinvald A, Frosting RD, Lieke E, et al (1988) Optical imaging of neuronal activity. Physiol Rev 68:1285–1365

    PubMed  CAS  Google Scholar 

  • Grinvald A, Lieke E, Frostig RD, et al (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature (Lond) 324:361–364

    Article  CAS  Google Scholar 

  • Haglund MM, Ojemann GA, Hochman DW (1992) Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature (Lond) 358:668–671

    Article  CAS  Google Scholar 

  • Holthoff K, Witte OW (1996) Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. J Neurosci 16:2740–2749

    PubMed  CAS  Google Scholar 

  • Hopp HP, Wu JY, Falk CX, et al (1990) Multisite optical measurement of membrane potential. In: Boulton AA, Vanderwolf CH (eds) Neurophysiological techniques: basic methods and concepts, Humana Press, Clinton NJ, pp193–226

    Chapter  Google Scholar 

  • Ikeda H, Ryu PD, Park JB, et al (1998) Optical responses evoked by single-pulse stimulation to the dorsal root in the rat spinal dorsal horn in slice. Brain Res 812:81–90

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Yamada H, Tanifuji M, et al(1995) Optical responses recorded after local stimulation in rat neostriatal slice preparations: effects of GABA and glutamate antagonists, and dopamine agonists. Exp Brain Res 106:187–195

    Article  PubMed  CAS  Google Scholar 

  • Lipton P (1973) Effects of membrane depolarization on light scattering by cerebral cortical slices. J Physiol (Lond) 231:365–383

    CAS  Google Scholar 

  • Malzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971–979.

    Article  Google Scholar 

  • Murase KM (1983) Electrophysiological properties of rat spinal dorsal horn neurones in vitro. J Physiol (Lond) 334:141–153

    CAS  Google Scholar 

  • Murase K, Saka T, Terao S, et al (1997) Slow optical response in rat spinal dorsal horn in slice. Soc Neurosci Abstr 27:1081

    Google Scholar 

  • Murase K, Sakata T, Terao S, et al (1998) Slow intrinsic optical signals in the rat spinal dorsal horn in slice. Neuroreport 9: 3663–3667.

    Article  PubMed  CAS  Google Scholar 

  • Randic M (1986) Plasticity of excitatory synaptic transmission in the spinal cord dorsal horn. Prop Brain Res 113:463–506

    Article  Google Scholar 

  • Randic M, Murase K, Ryu PD, et al (1987) Slow excitatory transmission in the rat spinal dorsal horn: possible mediation by tachykinins. Biomed Res 8 (suppl):71–82

    CAS  Google Scholar 

  • Sandkiihler J, Chen JG, Cheng G, et al (1997) Low-frequency stimulation of afferent Aδfibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat. J Neurosci 17:6483–6491

    Google Scholar 

  • Svoboda J, Sykova E (1991) Extracellular space volume changes in the rat spinal cord produced by nerve stimulation and peripheral injury. Brain Res 560:216–224

    Article  PubMed  CAS  Google Scholar 

  • Tanifuji M, Sugiyama T, Murase K (1994) Horizontal propagation of excitation in rat visual cortical slices revealed by optical imaging. Science 266:1057–1059

    Article  PubMed  CAS  Google Scholar 

  • Urban L, Randic M (1984) Slow excitatory transmission in rat dorsal horn: possible mediation by peptides. Brain Res 290:336–341

    Article  PubMed  CAS  Google Scholar 

  • Urban L, Thompson SWN, Dray A (1994) Modulation of spinal excitability: co-operation between neurokinin and excitatory amino acid neurotransmitters. Trends Neurosci 17:432–438

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M (1996) Slow synaptic transmission in the spinal dorsal horn. Prog Brain Res 113:443–462

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Japan

About this paper

Cite this paper

Murase, K., Ikeda, H., Terao, S., Asai, T. (2000). Slow Intrinsic Optical Signals in Rat Spinal Cord Slices and Their Modulation by Low-Frequency Stimulation. In: Kuba, K., Higashida, H., Brown, D.A., Yoshioka, T. (eds) Slow Synaptic Responses and Modulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66973-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66973-9_59

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66975-3

  • Online ISBN: 978-4-431-66973-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics