Skip to main content

Studies of Neurotransmitter Release at Cholinergic Synapses Formed Between Sympathetic Neurons in Culture: Role of Ca2+ Channels in Neurotransmitter Release

  • Conference paper
  • 190 Accesses

Abstract

Superior cervical ganglion neurons (SCGNs) of neonatal rats have been known to form cholinergic synapses in culture (O’Lagure et al. 1974). This article illustrates a useful system of mammalian synapse, SCGNs synapse formed in culture, for investigations of molecular mechanisms of neurotransmitter release and their modulation (Mochida et al. 1994ab, 1995, 1996; Mochida 1995). Two features of this preparation are particularly useful for applying electrophysiological studies: 1) the large size of the cell bodies (30–40 µm) of SCGNs and (2) the short diffusion distance from the cell body to release sites at the synaptic terminals. This combination of features makes it possible to introduce molecular probes, such as peptides, proteins, or antibodies into the presynaptic neuron while detecting resultant changes in acetylcholine (ACh) release by measuring postsynaptic electrical responses. With this microinjection approach, we have obtained evidence supporting roles for the interaction of N-type Ca2+channels with synaptic core complex of the synaptic vesicle protein VAMP/synaptobrevin (Trimble et al. 1988) and synaptic membrane proteins syntaxin (Bennett et al. 1992; Inoue et al. 1992; Yoshida et al. 1992) and SNAP-25 (Oyler et al. 1989) in regulating exocytosis at presynaptic terminals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler JE Schleifer LS, Black IB (1989) Partial purification and characterization of a membrane-derived factor regulating neurotransmitter phenotypic expression. Proc Natl Acad Sei USA 86:1080–1083

    Article  CAS  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  PubMed  CAS  Google Scholar 

  • Calakos N, Bennett MK, Peterson KE, et al (1994) Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263:1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Chapman ER, An S, Barton N, Jahn R. (1994) SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J Biol Chem 269:27427–27432

    PubMed  CAS  Google Scholar 

  • Dubel SJ, Starr TVP, Hell J, et al (1992) Molecular cloning of the a-1 subunit of an α-1 conotoxin-sensitive calcium channel. Proc Natl Acad Sei USA 89:5058–5062

    Article  CAS  Google Scholar 

  • Elferink LA, Trimble WS, Scheller RH (1989) Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J Biol Chem 264:11061–11064

    PubMed  CAS  Google Scholar 

  • Fukuda K. (1985) Purification and partial characterization of a cholinergic neuronal differentiation factor. Proc Natl Acad Sei USA 82:8795–8799

    Article  Google Scholar 

  • Hayashi T, McMahon H, Yamasaki S, et al (1994) Synaptic vesicle membrane fusion complex: action of clostridialneurotoxins on assembly. EMBO J 13:5051–5061

    PubMed  CAS  Google Scholar 

  • Inoue A, Obata K, Akagawa K. (1992) Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J Biol Chem. 267:10613–10619

    PubMed  CAS  Google Scholar 

  • Jahn R, Schiebler W, Ouimet C, et al (1985) A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sei USA 82:4137–4141

    Article  CAS  Google Scholar 

  • Johnson M, Ross D, Meyers M, et al (1976) Synaptic vesicle cytochemistry changes when cultured sympathetic neurones develop cholinergic interactions. Nature 262:308–310

    Article  PubMed  CAS  Google Scholar 

  • Ko C-P, Burton H, Johnson MI, et al (1976) Synaptic transmission between rat superior cervical ganglion neurons in dissociated cell cultures. Brain Res 117:461–485

    Article  PubMed  CAS  Google Scholar 

  • Landis SC (1990) Target regulation of neurotransmitter phenotype. Trends Neurosci 13:344–350

    Article  PubMed  CAS  Google Scholar 

  • Lévêque C, El Far O, Martin-Moutot N, et al (1994) Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. J Biol Chem 269:6306–6312

    PubMed  Google Scholar 

  • Llinâs R, Steinberg IZ, Walton K (1981) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J 33, 323–351

    Article  PubMed  Google Scholar 

  • Matthew WD, Tsavaler L, Reichardt LF (1981) Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol 91:257–269

    Article  PubMed  CAS  Google Scholar 

  • Mintz IM, Sabatini BL, Regehr WG (1995) Calcium control of transmitter release at a cerebellar synapse. Neuron 15:675–688

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Nonomura Y, Kobayashi H. (1994a) Analysis of the mechanism for acetylcholine release at the synapse formed between rat sympathetic neurons in culture. Microsc Res Tech 29:94–102

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Kobayashi H, Matsuda Y, et al (1994b) Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13:1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Mochida S. (1995) Role of myosin in neurotransmitter release: functional studies at synapses formed in culture. J Physiol (Paris) 89:83–94.

    Article  CAS  Google Scholar 

  • Mochida S, Saisu H, Kobayashi H, et al (1995) Impairment of syntaxin by botulinum neurotoxin Ci or antibodies inhibits acetylcholine release but not Ca channel activity. Neurosci 65:905–915.

    Article  CAS  Google Scholar 

  • Mochida S, Sheng Z-H, Baker C, et al (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca channels. Neuron 17:781–788

    Article  PubMed  CAS  Google Scholar 

  • O’Connor VM, Shamotienko O, Grishin E, et al (1993) On the structure of the ‘synaptosecretosome’: evidence for a neurexin/synaptotagmin/syntaxin/Ca channel complex. FEBS Lett. 326:255–260

    Article  PubMed  Google Scholar 

  • O’Lague PH, Obata K, Claude P, et al (1974) Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. Proc Natl Acad Sei USA 71:3602–3606

    Article  Google Scholar 

  • Oyler GA, Higgins GA., Hart RA, et al (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  • Petrenko AG, Perin MS, Davletov BA, et al (1991) Binding of synaptotagmin to the a-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353:65–69

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Landis SC (1990) Characterization of a target-derived neuronal cholinergic differentiation factor. Neuron 5:899–910

    Article  PubMed  CAS  Google Scholar 

  • Rees R, Bunge RP (1974) Morphological and cytochemical studies of synapses formed in culture between isolated rat superior cervical ganglion neurons. J Comp Neurol 157:1–12

    Article  PubMed  CAS  Google Scholar 

  • Rettig J, Sheng Z-H, Kim DK, et al (1996) Isoform-specific interaction of the aiA subunits of brain Ca2+channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sei USA 93:7363–7368

    Article  CAS  Google Scholar 

  • Robitaille R, Adler EM, Charlton MP (1990) Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5:773–779

    Article  PubMed  CAS  Google Scholar 

  • Saadat S, Sendtner M, Rohrer H (1989) Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture. J. Cell Biol. 08:1807–1816

    Article  Google Scholar 

  • Sheng Z-H, Rettig J, Takahashi M, et al (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13:1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Sheng Z-H, Rettig J, Cook T, et al (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–454

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ, Augustine GJ (1988) Calcium ions, active zones and synaptic transmitter release. Trends Neurosci 11:458–464

    Article  PubMed  CAS  Google Scholar 

  • Söllner T, Whiteheart SW, Brunner M, et al (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–323

    Article  PubMed  Google Scholar 

  • Stanley EF (1993) Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC, Baumert M, Perin MS, et al (1989) A synaptic vesicle membrane protein is conserved from mammals to Drosophila.Neuron 2:1475–1481

    Article  PubMed  Google Scholar 

  • Trimble WS, Cowan DM, Scheller RH (1988) VAMP-1: A synaptic vesicle-associated integral membrane protein. Proc. Natl. Acad. Sei. USA 85:4538–4542

    Article  CAS  Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, et al (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11:431–438

    Article  PubMed  CAS  Google Scholar 

  • Wakshull E, Johnson MI, Burton H (1979) Postnatal rat sympathetic neurons in culture. II. Synaptic transmission by postnatal neurons. J. Neurophysiol. 42:1426–1436

    PubMed  CAS  Google Scholar 

  • Weber MJ (1981) A diffusible factor responsible for the determination of cholinergic functions in cultured sympathetic neurons. J. Biol. Chem. 256:3447–3453

    PubMed  CAS  Google Scholar 

  • Westenbroek RE, Hell JW, Warner C, et al (1992) Biochemical properties and subcellular distribution of an N-type calcium channel al subunit. Neuron 9:1099–1115

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Wong V, Kessler JA (1987) Solubilization of a membrane factor that stimulates levels of substance P and choline acetyltransferase in sympathetic neurons. Proc. Natl. Acad. Sei. USA 84: 8726–8729

    Article  CAS  Google Scholar 

  • Wu L-G, Saggau P (1994) Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapses of the hippocampus. J. Neurosci. 14:5613–5622

    PubMed  CAS  Google Scholar 

  • Yoshida A, Oho C, Omori A, et al (1992) HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J. Biol. Chem. 267:24925–24928

    PubMed  CAS  Google Scholar 

  • Yoshikami D, Bagaldo Z, Olivera BM (1989) The inhibitory effects of omega-conotoxin on Ca channels and synapses. Ann. NY. Acad. Sci. 560:230–248.

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1993) Calcium and transmitter release. J. Physiol. (Paris) 87:25–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Japan

About this paper

Cite this paper

Mochida, S. (2000). Studies of Neurotransmitter Release at Cholinergic Synapses Formed Between Sympathetic Neurons in Culture: Role of Ca2+ Channels in Neurotransmitter Release. In: Kuba, K., Higashida, H., Brown, D.A., Yoshioka, T. (eds) Slow Synaptic Responses and Modulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66973-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66973-9_30

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66975-3

  • Online ISBN: 978-4-431-66973-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics