Skip to main content

Introductory Review: Exocytosis and Modulation

  • Conference paper
Book cover Slow Synaptic Responses and Modulation
  • 197 Accesses

Summary

A nerve impulse arrived at the nerve terminal activates voltage-gated Ca2+ channels and causes rapid Ca2+ influx. The high Ca2+ concentration produced in an active zone of the presynaptic terminal triggers the fusion of docked synaptic vesicles via low-affinity Ca2+-binding proteins and thus elicits neurotransmitter release. Synaptic vesicles are locally replenished by endocytosis. A fairly number of proteins and their interactions are involved in neurotransmitter exocytosis and synaptic vesicle recycling. Most of these processes are regulated by neuromodulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arancio O, Korn H, Gulyas A, et al (1994) Excitatory synaptic connections onto rat hippocampal inhibitory cells may involve a single transmitter release site. J Physiol (Lond.) 481:395–405.

    CAS  Google Scholar 

  • Atluri PP, Regehr WG (1996) Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 15:5661–5671.

    Google Scholar 

  • Atluri PP, Regehr WG (1998) Delayed release of neurotransmitter from cerebellar granule cells. J Neurosci 18:8214–8227.

    PubMed  CAS  Google Scholar 

  • Augustine GJ (1990) Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J Physiol (Lond.) 431:343–364

    CAS  Google Scholar 

  • Banerjee A, Kowalchyk JA, DasGupta BR et al (1996) SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis. J Biol Chem 271:20227–20230.

    Article  PubMed  CAS  Google Scholar 

  • Bean AJ, Scheller RH (1997) Better late than never: A role for rabs late in exocytosis. Neuron 19:751–754.

    Article  PubMed  CAS  Google Scholar 

  • Benfenati F, Valtorta F, Rubenstein JL, et al (1992) Synaptic vesicle-associated Ca27calmodulin-dependent kinase II is a binding protein for synapsin I. Nature 359:417–420.

    Article  PubMed  CAS  Google Scholar 

  • Bennett MK, Scheller RH (1993) The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sei USA 90:2559–2563.

    Article  CAS  Google Scholar 

  • Betz A, Ashley U, Rickmann M, et al (1998) Munc-13 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Betz WJ, Bewick GS (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255:200–203.

    Article  PubMed  CAS  Google Scholar 

  • Blundon JA, Wright SN, Brodwick MS, et al (1993) Residual free calcium is not responsible for facilitation of neurotransmitter release. Proc Natl Acad Sei USA 90:9388–9392.

    Article  CAS  Google Scholar 

  • Borst JGG, Sakmann B (1996) Calcium influx and transmitter release in a fast CNS synapse. Nature 383:431–434.

    Article  PubMed  CAS  Google Scholar 

  • Bourque MJ, Robitaille R (1998) Endogenous peptidergic modulation of perisynaptic Schwann cells at the frog neuromuscular junction. J Physiol (Lond.) 512:197–209.

    Article  CAS  Google Scholar 

  • Broadie K, Prokop A, Bellen HJ, et al (1995) Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15:663–673.

    Article  PubMed  CAS  Google Scholar 

  • Brose N, Petrenko AG, Südhof TC et al (1992) Synaptotagmin: A calcium sensor on the synaptic vesicle surface. Science 256:1021–1025.

    Article  PubMed  CAS  Google Scholar 

  • Bruns EM, Sasaki T, Takai Y, et al (1998) Rabphilin-3A: a multifunctional regulator of synaptic vesicle traffic. J General Physiol. 111:243–255.

    Article  Google Scholar 

  • Byrne JH, Kandel ER (1996) Presynaptic facilitation revisited: State and time dependence. J. Neurosci. 15: 425–435.

    Google Scholar 

  • Cash S, Dan Y, Poo MM, et al (1996a) Postsynaptic elevation of calcium induces persistent depression of developing neuromuscular synapses. Neuron 16:745–754.

    Article  PubMed  CAS  Google Scholar 

  • Cash S, Zucker RS, Poo MM (1996b) Spread of synaptic depression mediated by presynaptic cytoplasmic signaling. Science 272:998–1001.

    Article  PubMed  CAS  Google Scholar 

  • Castillo PE, Janz R, Südhof TC, et al (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388:590–593.

    Article  PubMed  CAS  Google Scholar 

  • Chapman ER, Hanson PI, An S, et al (1995) Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem. 270:23667–23671.

    Article  PubMed  CAS  Google Scholar 

  • Chen BM, Grinnell AD, (1997) Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J Neurosci 17:904–916.

    PubMed  CAS  Google Scholar 

  • Chen C, Regehr WG, (1997) The mechanism of cAMP-mediated enhancement at a cerebellar synapse. J Neurosci 15:8687–8694.

    Google Scholar 

  • Dale N, Kandel E R (1990) Facilitatory and inhibitory transmitters modulate spontaneous transmitter release at cultured Aplysiasensorimotor synapses. J Physiol (Lond.) 421:203–222.

    CAS  Google Scholar 

  • De Camilli P, Takei K (1996) Molecular mechanisms in synaptic vesicle endocytosis and recycling. Neuron 16:481–486.

    Article  PubMed  Google Scholar 

  • De Camilli, P (1995) Molecular mechanisms in synaptic vesicle recycling. FEBS Lett. 369,3–12.

    Article  PubMed  Google Scholar 

  • Delaney KR, Tank DW (1994) A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J Neurosci 14:5885–5902.

    PubMed  CAS  Google Scholar 

  • Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18:6147–6162.

    PubMed  CAS  Google Scholar 

  • Dresbach T, Burns ME, O’Conner V, et al (1998) A neuronal Seel homolog regulates neurotransmitter release at the squid giant synapse. J Neurosci 18:2923–2932.

    PubMed  CAS  Google Scholar 

  • Dunlap K, Luebke JI, Turner TJ (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18:89–98.

    Article  PubMed  CAS  Google Scholar 

  • Fatt P, Katz B (1952) spontaneous subthreshold activity at motor nerve endings. J Physiol (Lond) 117:109–128.

    CAS  Google Scholar 

  • Ferro-Novick S, Jahn R (1994) Vesicle fusion from yeast to man. Nature 370:191–193.

    Article  PubMed  CAS  Google Scholar 

  • Fischer SA, Fischer TA, Carew TJ (1997) Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci 20:170–177.

    Article  PubMed  Google Scholar 

  • Fujita Y, Shirataki H, Sakisaka T, et al (1998) Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter process. Neuron 20:905–915.

    Article  PubMed  CAS  Google Scholar 

  • Geppert M, Goda Y, Hammer RE, et al (1994) Synaptotagmin I : a major Ca2+ sensor for transmitter release at central synapse. Cell 79:717–727.

    Article  PubMed  CAS  Google Scholar 

  • Geppert M, Goda Y, Stevens CF, et al (1997) The small GTP-binding protein rab3A regulates a late step in synaptic vesicle fusion. Nature 387:810–814.

    Article  PubMed  CAS  Google Scholar 

  • Gillis KD, Mößner R, Neher E (1996) Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16:1209–1220.

    Article  PubMed  CAS  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, et al (1996) Hippocampal synaptic transmission enhanced by low concentration of nicotine. Nature 383:713–716.

    Article  PubMed  CAS  Google Scholar 

  • Gulyas AI, Miles R, Sik A, et al (1993) Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366:683–687.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Yamasaki S, Nauenburg S, et al (1995) Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J 14:2317–2325.

    PubMed  CAS  Google Scholar 

  • Hessler NA, Shirke AM, Malinow R (1993) The probability of transmitter release at a mammalian central synapse. Nature 366:569–572.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker S, Schweizer FE, Kao H-T, et al (1998) Two sites of action for synapsin domain E in regulating neurotransmitter release. Nature neuroscience1:29–35.

    Article  PubMed  CAS  Google Scholar 

  • Hsu S-F, Augustine GJ, Jackson MB (1996) Adaptation of Ca2+-triggered exocytosis in presynaptic terminals. Neuron 17:501–512.

    Article  PubMed  CAS  Google Scholar 

  • Huang S-M, Akita T, Kitamura A, et al (1999) Neurosci Res In press.

    Google Scholar 

  • Hunt JM, Bommert K, Charlton MP, et al (1994) A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12:1269–1279.

    Article  PubMed  CAS  Google Scholar 

  • Ilardi JM, Mochida S, Sheng Z-H (1999) Snapin: a SNARE-associated protein implicated in synaptic transmission. Nature neuroscience2:119–124.

    Article  PubMed  CAS  Google Scholar 

  • Kamiya H, Zucker RS (1994) Residual Ca2+ and short-term synaptic plasticity. Nature 371:603–606.

    Article  PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1965) The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc R Soc B161:483–495.

    Article  CAS  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol (Lond) 195:481–492.

    CAS  Google Scholar 

  • Katz B (1969) The release of neural transmitter substances. Springfield, Charles C. Thomas

    Google Scholar 

  • Klingauf J, Kavalali ET, Tsien RW (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394:581–585.

    Article  PubMed  CAS  Google Scholar 

  • Kuba K, Koketsu K (1976) The muscarinic effects of acetylcholine on the action potential of bullfrog sympathetic ganglion cells. Jpn J Physiol 26:703–716.

    Article  PubMed  CAS  Google Scholar 

  • Kuba K, Tomita T (1971) Noradrenaline action on nerve terminal in the rat diaphragm. J Physiol (Lond) 217:19–31.

    CAS  Google Scholar 

  • Kumamoto E, Kuba K (1985) Effects of K+ channel blockers on transmitter release in bullfrog sympathetic ganglia. J Pharmacol Exp Therap 235:241–247.

    CAS  Google Scholar 

  • Kumamoto E, Kuba K (1986) Mechanism of long-term potentiation of transmitter release induced by adrenaline in bullfrog sympathetic ganglia. J Gen Physiol 87:775–793.

    Article  PubMed  CAS  Google Scholar 

  • Kuromi H, Kidokoro Y (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophilamutant, Sibire. Neuron 20:917–925.

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ullrich B, Zhang JZ, et al (1994) Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375:594–599.

    Article  Google Scholar 

  • Littleton JT, Chapman ER, Kreber R, et al (1998) Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21:401–413.

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Tsien RW (1995) Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375:404–408.

    Article  PubMed  CAS  Google Scholar 

  • Llinâs R, Grüner JA, Sugimori M, et al (1991) Regulation by synapsin I and Ca2+-calmodulin-depedent protein kinase II of transmitter release in squid giant synapse. J Physiol (Lond) 436:257–282.

    Google Scholar 

  • Matsui Y, Kikuchi A, Kondo J, et al ( 1988) Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. J Biol Chem 263:11071–11074.

    PubMed  CAS  Google Scholar 

  • McMahon HT, Missler M, Li C, Südhof TC (1995) Complexins: Cytosolic proteins that regulate SNAP receptor function. Cell 83:111–119.

    Article  PubMed  CAS  Google Scholar 

  • Meffert MK, Calakos NC, Scheller RH, et al (1996) Nitric oxide modulates synaptic vesicle docking/fusion reactions. Neuron 16:1229–1236.

    Article  PubMed  CAS  Google Scholar 

  • Minota S, Koketsu K (1977) Effects of adrenaline on sympathetic ganglion cells of bullfrogs. Jpn J Physiol 27:353–366.

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Kobayashi H, Matsuda Y, et al (1994) Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13:1131–1142.

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Orita S, Sakaguchi G, et al (1998) Role of the Doc2a-Muncl3-l interaction in the neurotransmitter release process. Proc Natl Acad Sei USA 95:11418–11422.

    Article  CAS  Google Scholar 

  • Mochida S, Sheng Z-H, Baker C, et al (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17:781–788.

    Article  PubMed  CAS  Google Scholar 

  • Monteccuco C, Schiavo G (1995) Structure and function of tetanus and botulinum neurtoxins. Quart Rev Biophys 28:423–472.

    Article  Google Scholar 

  • Mothet J-P, Fossier P, Meunier F-M, et al (1998) Cyclic ADP-ribose and calcium-induced calcium release at a cholinergic synapses of Aplysia. J Physiol (Lond) 507:405–414.

    Article  CAS  Google Scholar 

  • Mulkey R M, Zucker RS (1992) Post-tetanic potentiation at the crayfish neuromuscular junction is dependent on both calcium and sodium ion accumulation. J Neurosci 12:4327–4336.

    PubMed  CAS  Google Scholar 

  • Murthy VN, Sejnowski TJ, Stevens CF (1997) Heterogenous release properties of visualized individual hippocampal synapses. Neuron 18:599–612.

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trens Cell Biol 4:179–183.

    Article  CAS  Google Scholar 

  • Nussinovitch I, Rahamimoff R (1988) Ionic basis of tetanic and post-tetanic potentiation at a mammalian neuromuscular junction. J Physiol (Lond) 396:435–455.

    CAS  Google Scholar 

  • Olafsson P, Wang T, Lu B (1995) Molecular cloning and functional characterization of the XenopusCa2+-binding protein frequenin. Proc Natl Acad Sei USA 92:8001–8005.

    Article  CAS  Google Scholar 

  • Ono S, Baux G, Sekiguchi M, et al (1998) Regulatory roles of complexins in neurotransmitter release from mature presynaptic nerve terminals. Eur J Neurosci 10:2143–2152.

    Article  PubMed  CAS  Google Scholar 

  • Orita S, Sasaki T, Komura R, et al (1995) Molecular cloning of an isoform of Doc2 having two C2-like domains. Biochem Biophys Res Commun 206:439–448.

    Article  PubMed  CAS  Google Scholar 

  • Pevsner J, Hsu SC, Braun JEA, et al (1994) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:353–361.

    Article  PubMed  CAS  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, et al (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497.

    Article  PubMed  CAS  Google Scholar 

  • Pongs O, Lindemeier J, Zhu XR, et al (1993) Frequenin -a novel calcium-binding protein that modulates synaptic efficacy in the Drosophilanervous system. Neuron 11:15–28.

    Article  PubMed  CAS  Google Scholar 

  • Redman RS, Silinsky EM (1994) ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. J Physiol (Lond) 477:117–127.

    CAS  Google Scholar 

  • Regehr WG, Delaney KIR, Tank DW (1994) The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J Neurosci 14:523–537.

    PubMed  CAS  Google Scholar 

  • Rettig J, Sheng Z-H, Kim DK, et al (1996) Isoform-specific interaction of the al A subunits of brain Ca2+ channels with presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sei USA 93:7363–7368.

    Article  CAS  Google Scholar 

  • Rivosecchi R, Pongs O, Theil T, et al (1994) Implication of frequenin in the facilitation of transmitter release in Drosophila. J Physiol (Lond) 474:223–232.

    CAS  Google Scholar 

  • Robinson PJ, Liu J-P, Powell KA, et al (1994) Phosphorylation of dynamin 1 and synaptic-vesicle recycling. Trends Neurosci 17:348–353.

    Article  PubMed  CAS  Google Scholar 

  • Robitaille R, Charlton MP (1992) Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J Neurosci 12:297–307.

    PubMed  CAS  Google Scholar 

  • Robitaille R, Jahromi BS, Charlton MP (1997) Muscarinic Ca2+ responses resistant to muscarinic antagonists at perisynaptic Schwann cells of the frog neuromuscular junction. Physiol (Lond) 504:337–347.

    Article  CAS  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Ryan TA (1999) Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J Neurosci 19:1317–1323.

    PubMed  CAS  Google Scholar 

  • Sabatini BL, Regehr WG (1996) Timming of neurotransmission at fast synapses in the mammalian brain. Nature 384:170–172.

    Article  PubMed  CAS  Google Scholar 

  • Salem N, Faundez V, Hong JT, et al (1998) A v-SNARE participates in synaptic vesicle formation mediated by the AP3 complex. Nature neuroscience1:551–556.

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Stenbeck G, Rothman JE, et al (1997) Binding of the synaptic vesicle v-SNARE, synaptotagimin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sei USA94:997–1001.

    Article  CAS  Google Scholar 

  • Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17:5858–5867.

    PubMed  CAS  Google Scholar 

  • Scholz K P, Miller RJ (1992) Inhibition of quantal transmitter release in the absence of calcium influx by a G-protein-linked adenosine receptor at hippocampal synapses.Neuron 8:1139–1150.

    Article  PubMed  CAS  Google Scholar 

  • Schulze KL, Broadie K, Perm MS, et al (1995) Genetic and electrophysiological studies of Drosophilasyntaxin-lA demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80:311–320.

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Liao YJ, Jan YN, et al (1993) Presynaptic A-current based on heteromultimeric K+ channels detected in vivo. Nature 365:72–75.

    Article  PubMed  CAS  Google Scholar 

  • Sheng Z-H, Rettig J, Takahashi M, et al (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  • Shirataki H, Kaibuchi K, Sakoda T, et al (1993) Rabphilin-3A, a putative target protein for smg p25/rab3Ap25 small GTP-binding protein related to synaptotagmin. Moll Cell Biol 13:2061–2068.

    CAS  Google Scholar 

  • Sivaramakrishnan S, Brodwick MS, Bittner GD (1991) Presynaptic facilitation at the crayfish neuromuscular junction. J Gen Physiol 98:1181–1196.

    Article  PubMed  CAS  Google Scholar 

  • Stanley EF (1993) Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  • Stanley EF (1997) The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci 20:404–409.

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Tsujimoto T (1995) Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc Natl Acad Sei USA 92:846–849.

    Article  CAS  Google Scholar 

  • Stevens CF, Sullivan JM (1998) Regulation of the readily releasable vesicle pool by protein kinase C. Neuron 21:885–893.

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Wang Y (1995) Facilitation and depression at single central synapses. Neuron 14:795–802.

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Wesseling JF (1998) Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21:415–424.

    Article  PubMed  CAS  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, et al (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Â resolution. Nature 395:347–353.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney ST, Broadie K, Keane J, et al (1995) Targeted expression of tetanus toxin light chain in Drosophilaspecifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351.

    Article  PubMed  CAS  Google Scholar 

  • Söllner T, Whiteheat SW, Brunner M, et al (1993a) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324.

    Article  PubMed  Google Scholar 

  • Söllner T, Bennett MK, Whiteheat SW, et al (1993b) A protein assembly-disassembly pathway in vitrothat may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418.

    Article  PubMed  Google Scholar 

  • Südhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653.

    Article  PubMed  Google Scholar 

  • Tanabe N, Kijima H (1992) Ca2+-dependent and -independent components of transmitter release at the frog neuromuscular junction. J Physiol (Lond) 455:271–289.

    CAS  Google Scholar 

  • Tang Y-G, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491.

    Article  PubMed  CAS  Google Scholar 

  • Tokumaru H, Pelligrini LL, Ishizuka T, et al (1997) Synaphin/Complexin is a critical protein in neurotransmitter release. J General Physiol 110:26a

    Google Scholar 

  • Touchot N, Chardin P, Tavitian A (1987) Four additional members of the rasgene superfamily isolated by an oligonucleotide strategy: Molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sei USA 84:8210–8214.

    Article  CAS  Google Scholar 

  • Wang C, Zucker RS (1998) Regulation of synaptic vesicle recycling by calcium and serotonin. Neuron 21:155–167.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Okamoto M, Schmitz F, et al (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598.

    Article  PubMed  CAS  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, et al (1998) SNAREpins: Minimal machinery for membrane usion. Cell 92:759–772.

    Article  PubMed  CAS  Google Scholar 

  • Weinreich D (1971) Ionic mechanism of post-tetanic potentiation at the neuromuscular junction of the frog. J Physiol (Lond) 212:431–446.

    CAS  Google Scholar 

  • Wheeler DB, Randall A, Tsien RW (1996) Changes in action potential alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus. J Neurosci 16:2226–2237.

    PubMed  CAS  Google Scholar 

  • Wu L-G, Betz WJ (1996) Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17:769–779.

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Binz T, Niemann H, et al (1998) Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature neuroscience1:192–200.

    PubMed  CAS  Google Scholar 

  • Yawo H (1996) Noradrenaline modulates transmitter release by enhancing the Ca2+ sensitivity of exocytosis in the chick ciliary presynaptic terminals. J Physiol (Lond) 493:385–391.

    CAS  Google Scholar 

  • Yawo H (1999) J Physiol (Lond), In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Japan

About this paper

Cite this paper

Mochida, S., Kuba, K. (2000). Introductory Review: Exocytosis and Modulation. In: Kuba, K., Higashida, H., Brown, D.A., Yoshioka, T. (eds) Slow Synaptic Responses and Modulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66973-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66973-9_29

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66975-3

  • Online ISBN: 978-4-431-66973-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics