Skip to main content

Animation of a Blooming Flower Using a Family of Complex Functions \( {M_{\zeta ,\alpha }}\left( z \right) = \exp \left( { - \alpha \frac{{\zeta + z}}{{\zeta - z}}} \right) \)

  • Conference paper
Book cover Models and Techniques in Computer Animation

Part of the book series: Computer Animation Series ((3056))

  • 118 Accesses

Abstract

Recently, Kim et. al.(1992) addressed the properties of a family of complex functions M ζ, α(z) = exp\(( - \alpha \frac{{\zeta + z}}{{\zeta - z}})\) where α > 0 and |ζ| = 1. When Newton’s method is applied to solve M ζ,α (z) − 1 = 0, the basins of attraction for its roots show flower-like self-similar structures which vary according to the value of α. From an artistic point of view, we explore those self-similar strucures for an animated sequence of flower blooming by extending M ζ,α (z) for α ≠ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alan Norton (1989), Julia set in the Quaternions, Computer Gr aphics, Vol 13, No. 2, pp. 267–278.

    Article  Google Scholar 

  • B. B. Mandelbrot (1982), The Fractal Geometry of Nature, W. H. Fr eeman and Company, New York.

    Google Scholar 

  • H. O. Kim and H. S. Kim (1991), Iteration, Denjoy-Wolff point and ergodic properrties of point-mass singular inner functions, J. of Mathematical Analysis and Applications, (to appear).

    Google Scholar 

  • H.-O. Peitgen, H. Jurgens, and D. Saupe (1990), FRACTALS: AN ANIMATED DISCUSSION, Science Television, W. H. Freeman and Company, New York.

    Google Scholar 

  • H.-O. Peitgen and D. Saupe (Eds) (1988), The Science of Fractal Images, Springer Verlag, New York.

    MATH  Google Scholar 

  • H.-O. Peitgen and P.H. Richter (1986), The Beauty of Fractals, Sprin ger Verlag, New York.

    Google Scholar 

  • H. S. Kim, Y. B. Kim, H. O. Kim, and S. Y. Shin (1992), Infinite-corner-point Fractal Image Generation by Newton’s Method for Solving exp(—ai) — 1 = 0, computer graphics, (to appear).

    Google Scholar 

  • John H. Hubbard (1990), The Beauty of Complexity of the Mandelbrot se t: University Edition, Science Television, Times Square Station, New York.

    Google Scholar 

  • M. A. Motyka and C. A. Reiter, Chaos and Newton’s Method on Systems, Computer Graphics, 14(1), pp. 415–418.

    Google Scholar 

  • M. Barnsley (1988), Fractals Everywhere, Academic Press, New York

    MATH  Google Scholar 

  • R. L. Devaney (1989), An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Menlo Park.

    MATH  Google Scholar 

  • R. L. Devaney (1989), CHAOS, FRACTAL, AND DYNAMICS: Computer Experiments in Mathetmatics, Science Television, Times Square Station, New York.

    Google Scholar 

  • R. L. Devaney (1989), TRANSITION TO CHAOS: The Orbit Diagram and the Mandelbrot Set, Science Television, Times Square Station, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Japan

About this paper

Cite this paper

Kim, H.S., Kim, Y.B., Kim, H.K., Kim, H.S., Kim, H.O., Shin, S.Y. (1993). Animation of a Blooming Flower Using a Family of Complex Functions \( {M_{\zeta ,\alpha }}\left( z \right) = \exp \left( { - \alpha \frac{{\zeta + z}}{{\zeta - z}}} \right) \) . In: Thalmann, N.M., Thalmann, D. (eds) Models and Techniques in Computer Animation. Computer Animation Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66911-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66911-1_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66913-5

  • Online ISBN: 978-4-431-66911-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics