Skip to main content

Structure of Plant Cell Walls and Implications for Nutrient Acquisition

  • Conference paper
Plant Nutrient Acquisition

Summary

The structure and function of plant cell walls are characterized by the chemical structures of their constituents, cellulosic polysaccharides, matrix polysaccharides, glycoproteins and lignin. In this chapter, the restriction of wall extensibility in growing cells and the aggregation of cells in rice callus tissues by the coupling of feruloyl residues on matrix polysaccharides, the permeability of the plant cell wall, and a possible role for cell wall components, phenolic acids, in nutrient acquisition are described in addition to the chemical structures of the major components of plant cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ae N, Otani T (1997) The role of cell wall components from groundnut roots in solubilizing spar-ingly soluble phosphorus in low fertility soils. In: Ando T et al. (Eds) Plant nutrition for sustain-able food production and environment. Kluwer Academic, Dordrecht, Netherlands, pp 309–314

    Chapter  Google Scholar 

  • Ae N, Arihara J, Okada K, Yoshihara J, Ohtani T, Johansen C (1993) The role of piscidic acid se-creted by pigeonpea roots grown in an Alfisol with low-P fertility. In: Randall PJ (Ed) Genetic aspects of plant mineral nutrition. Kluwer Academic, Dordrecht, Netherlands, pp 279–288

    Google Scholar 

  • Akiyama Y, Mori M, Kato K (1980)13C-NMR analysis of hydroxyproline arabinosides from Nicoti-ana tabacum. Agric Biol Chem 44: 2487–2489

    Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47: 445–476

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3: 1–30

    Article  PubMed  CAS  Google Scholar 

  • Darvill A, McNeil M, Albersheim P, Delmer DP (1980) The primary cell walls of flowering plants. In: Tolbert NE (Ed) The biochemistry of plants Vol 1. Academic, New York, pp 91–162

    Google Scholar 

  • Fry SC (1983) Feruloyled pectins from the primary cell wall: their structure and possible func-tions. Planta 157: 111–123

    Article  CAS  Google Scholar 

  • Fry SC (1985) Primary cell wall metabolism. In: Miflin BJ (Ed) Oxford surveys of plant molecular and cell biology 2. Oxford, Clarendon, pp 1–42

    Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann Rev Plant Physiol 37: 165–186

    Article  CAS  Google Scholar 

  • Fry SC (1995) Polysaccharide-modifying enzymes in the plant cell wall. Ann Rev Plant Physiol Plant Mol Biol 46: 497–520

    Article  CAS  Google Scholar 

  • Fry SC, Miller JG (1989) Toward a working model of the growing plant cell wall: phenolic cross-linking reaction in the primary plant cell walls of dicotyledons. In: Lewis NG, Paice MG (Eds) Plant cell wall polymers: biogenesis and biodegradation, ACS Symp Ser 399, Am Chem Soc, Washington DC, pp 33–46

    Chapter  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70: 107–124

    Google Scholar 

  • Geissmann T, Neukom H (1971) Vernetzung von Phnolcarbonsaureestern von Polysacchariden durch oxydative phenolishe Kupplung. Helv Chim Acta 54: 1108–1112

    Article  CAS  Google Scholar 

  • Hartley RD, Ford CW (1989) Phenolic constituents of plant cell walls and wall biodegradability. In: Lewis NG and Paice MG (Eds) Plant cell wall polymers: biogenesis and biodegradation. ACS Symp Ser 399, Am Chem Soc, Washington DC, pp 137–149

    Chapter  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primarywall.Annu Rev Plant Physiol Plant Mol Biol 40: 139–168

    Article  CAS  Google Scholar 

  • Hayashi T, Ohsumi C, Kato Y, Yamanouchi H, Toriyama K, Hinata K (1994) Effects of amino acid medium on cell aggregation in suspension-cultured rice cells. Biosci Biotech Biochem 58: 256–260

    Article  CAS  Google Scholar 

  • Ishii T (1991) Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell walls. Carbohydr Res 219: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Ishii T (1997a) O-Acetylated oligosaccahrides from pectins of potato tuber cell walls. Plant Physiol 113: 1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Ishii T (1997b) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127 Ishii T, Hon T (1990) Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot. Carbohydr Res 206: 297–310

    Article  Google Scholar 

  • Kamisaka S, Takeda S, Takahashi K, Shibata K (1990) Diferulic and ferulic acid in the cell wall of Avena coleoptiles-their relationships to mechanical properties of the cell wall. Physiol Plant 78: 1–7

    Article  CAS  Google Scholar 

  • Kato Y (1993) Influence of water-insoluble dietary fiber on in vitro glucose diffusion speed (in Japanese). J Jpn Soc Nutr Food Sci 46: 351–355

    Article  CAS  Google Scholar 

  • Kato Y, Akiyama M (1993) Gel-filtration chromatography of dextrans and maltodextrins on a water-insoluble dietary fiber column (in Japanese). J Jpn Soc Nutr Food Sci 46: 161–166

    Article  CAS  Google Scholar 

  • Kato Y, Matsuda K (1976) Presence of a xyloglucan in the cell wall of Phaseolus aureus hypocotyls. Plant Cell Physiol 17: 1185–1198

    CAS  Google Scholar 

  • Kato Y, Matsuda K (1977) Distribution of xyloglucan in Phaseolus aureus seeds. Plant Cell Physiol 18: 1089–1098

    CAS  Google Scholar 

  • Kato Y, Matsuda K (1994) Examination of the fine structures of xyloglucans using endo-(1 -*4)-(3o-glucanases. Methods Carbohydr Chem 10: 207–216

    CAS  Google Scholar 

  • Kato Y, Mitsuishi Y (1999) Structural investigation of xyloglucan fragments obtained from cell walls of immature barley plants II (in Japanese). Nippon Nogeikagaku Kaishi 73: 10

    Article  Google Scholar 

  • Kato Y, Nevins DJ (1984a) Enzymic dissociation of Zea shoot cell wall polysaccharides. I. Preliminary characterization of the water-insoluble fraction of Zea shoot cell walls. Plant Physiol 75: 740744

    Google Scholar 

  • Kato Y, Nevins DJ (1984b) Enzymic dissociation of Zea shoot cell wall polysaccharides. IV. Dissociation of glucuronoarabinoxylan by purified endo-(1-*4)-13-xylanase from Bacillus subtilis. Plant Physiol 75: 759–765

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Nevins DJ (1985) Isolation and identification of 0-(5–0-feruloyl-a-c-arabinofuranosyl)(1—*3)-O-13-D-xylopyranosyl-(1*4)-D-xylopyranose as a component of Zea shoot cell-walls. Carbohydr Res 137: 139–150

    Article  CAS  Google Scholar 

  • Kato Y, Nevins DJ (1986) Fine structure of (1—*3),(1—+4)-ß-D-glucan from Zea shoot cell-walls. Carbohydr Res 147: 69–85

    Article  CAS  Google Scholar 

  • Kato Y, Yamanouchi H, Hinata K, Ohsumi C, Hayashi T (1994) Involvement of phenolic esters in cell aggregation of suspension-cultured rice cells. Plant Physiol 104: 147–152

    PubMed  CAS  Google Scholar 

  • Knight AH, Crooke WM, Inkson RHE (1961) Cation-exchange capacities of tissues of higher and lower plants and their related uronic acid contents. Nature 192: 142–143

    Article  PubMed  CAS  Google Scholar 

  • Konishi T, Mitsuishi Y, Kato Y (1997a) Analysis of the oligosaccharide units of xyloglucans by digestion with isoprimeverose-producing oligoxyloglucan hydrolase followed by anion-exchange chromatography. Biosci Biotechnol Biochem 62: 2421–2424

    Article  Google Scholar 

  • Konishi T, Mitsuishi Y, Kato Y (1997b) Structural analysis of the Solanaceae xyloglucans using xyloglucanase hydrolysis method. Plant Physiol 114: 83 (suppl)

    Google Scholar 

  • Konishi T, Mitsuishi Y, Kato Y (1998) Compositional analysis of the oligosaccharide units of xyloglucans isolated from the cell walls of leaf and root vegetables. J Appl Glycosci 45: 401–405

    CAS  Google Scholar 

  • Kooiman P (1960) A method for the determination of amyloid in plant seeds. Red Tray Chim Pays-Bas 79: 675–678

    Article  CAS  Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Ann Rev Biochem 53: 625–663

    Article  PubMed  CAS  Google Scholar 

  • Nagarajah S, Posner AM, Quirk JP (1970) Competitive adsorptions of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces. Nature 228:83–84 O’Neill M,Albersheim P, Darvill A (1990) Pectic polysaccharides. Methods Carbohydr Chem 1: 478–512

    Google Scholar 

  • Otani T, Ae N (1996a) Sensitivity of phosphorus uptake to changes in root length and soil volume. Agron J 88: 371–375

    Article  Google Scholar 

  • Otani T, Ae N (1996b) Phosphorus (P) uptake mechanisms of crops grown in soils with low P status. I. Screening crops for efficient P uptake. Soil Sci Plant Nutr 42: 155–163

    Google Scholar 

  • Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses: active incorpora-tion of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275: 167–178

    Article  CAS  Google Scholar 

  • Smith MM, O’Brien TP (1979) Distribution of autofluorescence and esterase and peroxidase ac-tivities in the epidermis of wheat roots. Aust J Plant Physiol 6: 201–219

    Article  CAS  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat-and rice-root washing. I. Soil Sci Plant Nutri 22: 423–433

    Article  CAS  Google Scholar 

  • Talmadge KW, Keegstra K, Bauer WD, Albersheim P (1973) The structure of plant cell walls. I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiol 51: 158–173

    Google Scholar 

  • Tepfer M, Taylor IEP (1981) The permeability of plant cell walls as measured by gel filtration. Science 213: 761–763

    Article  PubMed  CAS  Google Scholar 

  • Toriyama K, Hinata K (1985) Cell suspension and protoplast culture in rice. Plant Sci 41: 179–183

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this paper

Cite this paper

Kato, Y. (2001). Structure of Plant Cell Walls and Implications for Nutrient Acquisition. In: Ae, N., Arihara, J., Okada, K., Srinivasan, A. (eds) Plant Nutrient Acquisition. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66902-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66902-9_12

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66904-3

  • Online ISBN: 978-4-431-66902-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics