Skip to main content

Variation, Adaptation and Developmental Constraints in the Mimetic Butterfly Papilio dardanus

  • Chapter
Morphogenesis and Pattern Formation in Biological Systems

Summary

Wing patterns in mimetic butterflies can diversify rapidly to match a chemically defended model, and polymorphic species as the African Mocker Swallowtail, Papilio dardanus, even may mimic several different models. Evolutionary geneticists have ascribed the accurate control of complex differences in wing patterns to the action of ‘supergenes’, i.e. tightly linked multiple genes each specifying particular elements of the wing pattern. However, this concept appears less plausible in the light of modern developmental biology. Instead, we propose that Turing type mechanisms of morphogen gradients may account for a co-ordinate system that while largely buffered from variation, can be modified to produce new or alternate phenotypes by changing a small set of parameters during wing development. The sequential specification of cells in the developing wing allows for the repeated intervention of regulatory components to affect the phenotype, producing complex variation even if genetic differences are small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, W. (2000). The concept of developmental reprogramming and the quest an inclusive theory of evolutionary mechanisms. Evol,. Dev., 2: 49–57.

    Google Scholar 

  2. Beldade, P. and P.M Brakefield (2002). The genetics and evo-devo of butterfly g patterns. Nat. Rev. Genet., 3: 442–452.

    Google Scholar 

  3. Brakefield, P.M. (1998). The evolution-development interface and advances with the eyespot patterns of Bicyclus butterflies. Heredity, 80: 265–272.

    Article  Google Scholar 

  4. Carroll, S.B., Gates, J., Keys, D.N., Paddock, S.W., Panganiban, G.E.F., Selegue, J.E. and Williams, J.A. (1994). Pattern formation and eyespot determination’ in butterfly wings. Science, 265: 109–114.

    Article  Google Scholar 

  5. Carroll; S,B., ‘Grenier, J.K. and Weatherbee, S.D. (2002). From DN4 to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwells, Oxford.

    Google Scholar 

  6. Charlesworth, D. and!Charlesworth, B. (1976). Theoretical genetics of Batesia mimicry. III. Evolution of dominance. Theor. Biot, 55: 325–327

    Google Scholar 

  7. Clarke, C.A., Clarke, F.M.M., Collins, S.C., Gill, A.C.L. and Turner, J.R.G. (1985). Male-like females, mimicry and transvestism in swallowtail butterflies, Syst. Entomol., 10:257–283:

    Article  Google Scholar 

  8. Clarke, C.A. and Sheppard, P.M. (1959). The genetics of Papilla dart/anus, Brown. I. Race cenea from South Africa. Genetics, 44: 1347–1358.

    Google Scholar 

  9. Clarke, C.A. and Sheppard, P.M. (1963). Interactions between major genes and polygenes in the determination of the mimetic patterns of Pap ilia dardanus. Evolution, 17: 404–413

    Article  Google Scholar 

  10. Clarke, C.A. and Sheppard, P.M. (1971). Further studies on the genetics mimetic butterfly Papilla rn. emnon. Phil: Trans. Roy. Soc. B, 263: 35–70.

    Article  Google Scholar 

  11. Fisher, RA. (1930). The Genetical Theory of Natural Selection. Clarendo ford, UK.

    MATH  Google Scholar 

  12. Ford; E.B. (1936). The genetics of Papil o dardanus Brow Eniomol, Soc. Lond., 85: 435–466.

    Google Scholar 

  13. French, V. (1997). Pattern formation in colour on butterfly wings. Cur. Opin. Gen. Develop., 7:524–529

    Article  Google Scholar 

  14. Gerhart, J. and Kirschner, M. (1997). Cells, Embryos, and Evolution. Blackwell, Malden, MA.

    Google Scholar 

  15. Koch, P.B., Keys, D.N., Rocneleau, T., Aronstein, K., Blackburn, M., Carroll, S.B. and Drench-Constant, R.H. (1998). Regulation of Dopa Decarboxylase expression during colour pattern formation in wild-typ and melanic Tiger Swallowtail Butterflies. Development, 125: 2303–2313.

    Google Scholar 

  16. Koch, P.B., Lorenz, Ti., Brakefield, P.M. and Dfrench-Constant, P.H. (2000). Butterfly wing pattern mutants: developmental heterochrony and co-ordinately regulated phenotypes. Devel. Genes Evol. 210: 536–544.

    Article  Google Scholar 

  17. Madzvamuse, A., Thomas, R.D.K., Sekimura, T., Wathen, A.J. and Maini, P.K. (2003). The moving grid finite element method applied to biological problems in T. Sekimura, S. Noji, N. Jeno, and P. K. Maim, eds. Morphogenesis and Pattern Formation in Biological Systems. Springer Verlag, Tokyo.

    Google Scholar 

  18. McMillan, O.W., Monteiro, A. and Kapan, D.D. (2002). Development and evolution on the wing. Trends Ecol. Evol. 17:125–133.

    Article  Google Scholar 

  19. Murray, J. (1972). Genetic Diversity and Natural Selection. Oliver and Boyd, Edinburgh.

    Google Scholar 

  20. Murray, J.D. (1981). On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil. Trans. Roy. Soc. Land. B, 295: 473–496.

    Article  Google Scholar 

  21. Nijhout, H.F. (1991). The Development and Evolution of Butterfly terns. Smithsonian Institution Press, Washington.

    Google Scholar 

  22. Nijhout, H.F. (1994). Developmental perspectives on evolution of butterflies. BioScience, 8: 148–157.

    Google Scholar 

  23. Nijhout, H.F. (1994). Symmetry systems and compartments in Lepidoptera wings: the evolution of a patterning mechanism. Development Supp:225–233

    Google Scholar 

  24. Nijhout, H.F. (1999). When developmental pathways diverge. Proc. Natl. Acad. Sci., 96: 5348–5350.

    Article  Google Scholar 

  25. O’Donald, P. and Barrett, J.A. (1973). Evolution of dominance in polymorphic Batesian mimicry. Theoret. Pop. Biol., 4: 173–192.

    Article  Google Scholar 

  26. Robinson, R. (1971). Lepidoptera Genetics. Pergamon, Oxford.

    Google Scholar 

  27. Schwanwitsch, B.N. (1924). On the ground plan of wing-pattern in nyrnphalids and certain other families of rhopalocerous Lepidoptera. Proc. Zool. Soc. Lond., 1924: 509–528.

    Google Scholar 

  28. Sekimura, T., Madzvamuse, A., Wathen, A.J. and Maini, P.K. (2000). A model for colour pattern formation in the butterfly wing of Papilio dardanus. Proc. Roy. Soc. Load. B, 267: 851–859.

    Article  Google Scholar 

  29. Sheppard, P.M. (1975). Natural Selection and Heredity ( 4th edn ). Hutchinson, London.

    Google Scholar 

  30. Turing, A.M. (1952): The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B. 237: 37–72.

    Article  Google Scholar 

  31. Turner, J.R.G. (1963). Geographical variation and evolution in the males of the butterfly Papilio dardanus Brown (Lepidoptera: Papiüonidae). Trans R. ent. Soc. Land., 115: 239–259

    Article  Google Scholar 

  32. Turner, J.R.G. (1978). Why male butterflies are non-mimetic: natural selection. group selection, modification and sieving. Biol. J. Linn. Soc., 10: 385–432.

    Article  Google Scholar 

  33. Turner, J.R.G. (1984). Mimicry: the palatability spectrum and its consequences. Symp. R. ent. Soc. Lond., 11: 141–161.

    Google Scholar 

  34. Vane-Wright, R.I. (1981). Mimicry and its unknown ecological consequences. pp. 157–168 in P. L. Forey, Eds. The Fso rnrzg Biosphere. BMNH/ Carnbridge UP, London

    Google Scholar 

  35. Vane-Wright, R.I. and Boppré, M. (1993). Visual and chemical signalling in butterflies: functional and phvlogenetic perspectives. Phsl. Trans. Roy. Soc. Land. B, 340: 197–205

    Article  Google Scholar 

  36. Waddington, C.H. (1942); The canalisation of development and the inheritance of acquired characters. Nature, 150: 563.

    Article  Google Scholar 

  37. Waddington, C.H. (1957). The Strategy of the Genes. Alien and Unwin, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Cieslak, A., Vane-Wright, R.I., Vogler, A.P. (2003). Variation, Adaptation and Developmental Constraints in the Mimetic Butterfly Papilio dardanus . In: Sekimura, T., Noji, S., Ueno, N., Maini, P.K. (eds) Morphogenesis and Pattern Formation in Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65958-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65958-7_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65960-0

  • Online ISBN: 978-4-431-65958-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics