Abstract
The development of a primary solid tumour (e.g. a carcinoma) begins with a single normal cell becoming transformed as a result of mutations in certain key genes. This transformed cell differs from a normal one in several ways, one of the most notable being its escape from the body’s homeostatic mechanisms, leading to inappropriate, proliferation. An individual tumour cell has the potential, over successive divisions, to develop into a cluster (or nodule) of tumour cells. Further growth and proliferation leads to the development of an avascular tumour consisting of approximately 106 cells. This cannot grow any further, owing to its dependence on diffusion as the only means of receiving nutrients and removing waste products. For any further development to occur the tumour must initiate angiogenesis — the recruitment of blood vessels. Once angiogenesis is complete, the blood network can supply the tumour with the nutrients it needs to grow further. There is now also the possibility of tumour cells finding their way into the circulation and being deposited at distant sites in the body, resulting in metastases (secondary tumours).
Keywords
- Tumour Cell Density
- Individual Tumour Cell
- Primary Solid Tumour
- Remove Waste Product
- Tumour Geometry
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Anderson, A. R. A., Sleeman, B. D., Young, I, M. and Griffiths, B. S. (1997). Nematode movement along a chemical gradient in a structurally heterogeneous environment: II. Theory, Fundam. appl. Nematol., 20, 165–172.
Anderson, A. R. A. and Chaplain, M. A. J. (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis, Bull. Math. Biol., 60, 857–899.
Anderson, A. R. A. and Chaplain, M. A. J., newman, E. L., Steele, R. J. C. and Thompson, A. M. (2000), Mathemayical Modelling of Tumour Invasion. and Metastasis, J. Theoret. Med., 2, 129–154.
Anderson A. R. A. (2003). A hybrid’ discrete-continuum technique for individual based migration models, in Polymer and Cell Dynamics, eds. Alt, W., Chaplain, M., Griebel, M., Lenz, J., Birkhauser
Anderson, A. R. A. and Pitcairn, A. (2003), Application of the hybrid discrete-continuum technique, in Polymer and Cell Dynamics, eds. Alt, W., Chaplain, M. Griebel, M., Lenz, J:, Birkhauser.
Bray, D. (1992). Cell Movements, Garland Publishing, New York.
Burridge, K. and Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractability, and signalling, Annu. Rev, Cell Del). Biol, 12, 463–518.
Calabresi, P. and Schein, P. S,, eds. (1993). Medical Oncology, 2nd ed., McGraw-Hill, New York.
Casciari, J. J., Sotirchos,:S. V., and Sutherland, R. M. (1992). Variation in tumour cell growth rates and metabolism with oxygen-concentration, glucose-concentration and extraceliular pH, J. Cell Physiol., 151, 386–394
Hotary, K., Allen, E., Punturieri, A., Yana, I. and Weiss. S. J. -(2000). Regulation of cell invasion and morphogenesis in:a 3-dimensional type I collagen matrix by membrane-type metalloproteinases 1, 2 and 3,’ J. Cell Biol.,149, 1309–1323.
Hynes, R. O. (1992), Integrins: versatility modulation, and signalling in cell adhesion, Cell, 69, 11–25.
Koochekpour, S., Pilkington, G. J. and Merzak, A. (1995). Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro, Intl. J. Cancer, 63, 450–454:
Lane, D. P. (1994). The regulation of p53 function. Steiner Award Lecture, Int. J. Cancer, 57, 623–627.
Sherwood, L. (2001). Human Physiology Brooks/Cole, California.
Stetler-Stevenson, W. G:, Aznavoorian, S. and Liotta, L… (1993). Tumor cell interactions with the extracell:ular matrix during invasion and metastasis, Ann. Rev. Cell Biol.,9, 541–573
Takeichi, M. (1993). Cadherins in cancer: implications for invasion and metastasis, Curr. Opiri, Cell Biol., 5, 806–811.
Terranova, V. P., Diflorio, R., Lyall, R. M., Hic, S., Friesel, R. and Mlaciag, T. (1985): Human endothelial cells are chemotactic to endothelial cell growth factor and heparin, J. Cell Biol., 101, 2330–2334.
T horgeirsson, U. P., Lindsay, C. K., Cottam, D. W. and Gomez, Daniel E. (1994). Tumor invasion, proteolysis,’ and angiogenesis, J. Neuro-Orzcology, 18, 89–103.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer Japan
About this chapter
Cite this chapter
Anderson, A.R.A. (2003). The Effects of Cell Adhesion on Solid Tumour Geometry. In: Sekimura, T., Noji, S., Ueno, N., Maini, P.K. (eds) Morphogenesis and Pattern Formation in Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65958-7_27
Download citation
DOI: https://doi.org/10.1007/978-4-431-65958-7_27
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-65960-0
Online ISBN: 978-4-431-65958-7
eBook Packages: Springer Book Archive