Skip to main content

Pattern Formation during Dicotyledonous Plant Embryogenesis

  • Chapter
Morphogenesis and Pattern Formation in Biological Systems

Summary

A basic body plan consisting of two axes, apical-basal and radial (central-peripheral), is established during the embryogenesis of higher plants. The embryo forms the shoot and root meristems, which are essential for postembryonic development, at the opposite ends of the apical-basal axis. Recently, a molecular genetic approach using the model plant Arabidopsis thaliana has provided insight into the establishment of the basic body plan and the molecular mechanisms regulating the formation of the apical meristems. The phytohormone auxin in particular has been shown to he involved in pattern formation during the early stages of embryogenesis. In this review, we focus on several recent studies of the establishment of the body plan and pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida, M., Ishida, T., Fukaki, H. Fujisawa, H. and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell., 9, 841–857

    Article  Google Scholar 

  2. Aida, M., Ishida, T. and Tasaka, M. (1999). Shoot apical meristern and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 126: 1563–1570.

    Google Scholar 

  3. Aida, M., Vernoux, T,, Furutani, M., Traas, J. and Tasaka, M. (2002). Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development, 129: 3965–3974.

    Google Scholar 

  4. Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. and Offringa, R. (2001). The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development, 128: 4057–4067.

    Google Scholar 

  5. Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, RA., Walker, A.R.; Schulz, B. and Feldmann, K.A. (1996). Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science, 273: 948–950.

    Google Scholar 

  6. Bennett, S.R.M., Alvarez, J., Bossinger, G. and Smyth, D.R. (1995). Morpho-genesis in pinoid mutants of Arabidopsis thaliana. Plant J., 8: 505–520

    Article  Google Scholar 

  7. Berieth, T. and Jurgens, G. (1993). The role of the rnonopteros gene in organising the basal body region of the Arabidopsis embryo. Development, 118: 575–587.

    Google Scholar 

  8. Bowman, JL. and Eshed; Y. (2000). Formation and maintenance of the shoot apical meristem. Trends Plant Sci., 5: 110–115.

    Article  Google Scholar 

  9. Busch, M., Mayer, L. and Jurgen, G. (1996). Molecular analysis of the Arabidopsis pattern formation of gene GAI OM: gene structure and intragenic complementation. Mol Gen. Genet., 250: 681. 691.

    Google Scholar 

  10. Clark, J.K. and Sheridan, W.F. (1991). Isolation and Characterization of 51 embryo-specific Mutations of Maize. Plant Cell, 3: 935–951.

    Google Scholar 

  11. Christensen, S.K., Dagenais, N., Chory, J. and Weigel, D. (2000). Regulation of auxin response by the protein kinase PINOID. Cell, 100: 469–478.

    Article  Google Scholar 

  12. Di, Laurenzio, L., Wysocka-Diller, J., Malamy,’ J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G.; Feldmann, K.A. and Benfey, P.N. (1996). The SC.4RECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 86: 423–433.

    Google Scholar 

  13. Elliott, R.C.; Betzner, A.S., Buttner, E., Oakes, M.P., Tucher, W.Q.J., Gerentes, D., Perez, P. and Smyth, D.R. (1996). AINTEGUMENTA, an APETALA2-like gene of ’.4rabidopsis with pleiotropic roles,in ovule development and floral organ growth. Plant Cell, 8: 155–168.

    Google Scholar 

  14. Errampalli, D:, Patton, D., Castle, L., Nickelson, L., Hansen, K., Schnall, J., Feldmann, K. and Meinke, D. (1991). Embryonic Lethals and T-DIVA Insertional Nlutagenesis in:Abidopsis: Plant Cell, 3: 149–157.

    Google Scholar 

  15. Eshed, Y., Baum, S.F., Perea, J.V. and Bowman, J.L. (2001). Establishment of polarity in lateral organs of plants. Carr Biol., 11: 1251–1260.

    Google Scholar 

  16. Fischer, C., Speth, V., Fleig-Eberenz, S. and Neuhaus, G. (1997.). Induction of zygotic polyembryos in wheat: Influence of auxin polar transport. Plant Cell, 9: 1767–1780

    Google Scholar 

  17. Fukaki, H., Wysocka-Diller, J., Nato, T., Fujisawa, H., Benfey, P.N. and Tasaka, M. (1998). Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J., 14: 425–430.

    Google Scholar 

  18. Galweiler, L., Guan, C., Muller, A., Wisman, E., Meudgen, K., Yephremov, A. and Palme, K. (1998), Regulation of polar auxin transport. by AtPIN1 in Arabidopsis vascular tissue. Science, 282: 2226–2230.

    Google Scholar 

  19. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. and Estelle, M. (2001). Auxin regulates SCFTIRI-dependent degradation of AUX/IAA proteins. Nature, 414; 271–276.

    Article  Google Scholar 

  20. Hadfi, K., Speth, V. and Neuhaus, G. (1998), Auxin-induced developmental patterns in Brassica juncea embryos. Development, 125: 879–887.

    Google Scholar 

  21. Hamann, T., Mayer, U. and Jurgens, G. (1999). The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development, 126: 1387–1395.

    Google Scholar 

  22. Hamann, T., Benkova, E., Baurle, L., Kientz, M. and Jurgens, G. (2002). The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dee., 16: 1610–1615.

    Article  Google Scholar 

  23. Hardtke, C.S. and Berleth, T. (1998). The Arabidapsis gene Monopteros encodes a transcription factor mediating embryo axis formation and vascular development. EIVIBO J. 17: 1405–1411

    Google Scholar 

  24. Heckel. T., Werner, K., Sheridan, W.F., Dumas, C. and Rogowsky, P.M. (1999). Novel phenotypes and developmental arrest in early embryo specific mutants of maize. Planta, 210: 1–8.

    Article  Google Scholar 

  25. Helariutta, Y., Fukaki, H., Wysocka-Dilier, J., Nakajima, K., Jung, J., Sena, G., Hauser, M.T. and Benfey, P.N. (2000). The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 101: 555–567.

    Article  Google Scholar 

  26. Hobbie, L., McGovern, M., Hurwitz, L.R., Pierro. A., Liu, N.Y., Bandyopadhyay, A. and Estelle, M. (2000). The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development, 127: 23–32.

    Google Scholar 

  27. Jang, J.C., Fujioka, S.; Tanaka. M., Seto, H., Takatsuto, S., Ishii, A., Aida, NI., Yoshida, S. and Sheen, J. (2000). A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev., 14: 1485–1497.

    Google Scholar 

  28. Kerstetter, R.A., Bollrnan, K., Taylor, R.A., Bomblies, K. and Poethig, R.S. (2001). KANADLregulates organ polarity in Arabidopsis. Nature, 411: 706–709.

    Article  Google Scholar 

  29. Kim, J., Harter, K. and Theologis, A. (1997). Protein-protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci.,94: 11786–11791.

    Article  Google Scholar 

  30. Klucher, K.M., Chow, H., Reiser, L. and Fischer, R.L. (1996). The, ?INTEGf;’MENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene, APETALA2. Plait Cell, 8: 137–153.

    Google Scholar 

  31. Liu, C.M., Xu, Z.H. and Chua, N-H. (1993). Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell, 5: 621–630.

    Google Scholar 

  32. Long, J.A. and Barton, M.K. (1998). The development of apical embryonic pattern in Arabidopsis. Development, 125: 3027–3035.

    Google Scholar 

  33. Long, J.A., Woody, S., Poethig, S., Meyerowitz, É.M. and Barton, M.K. (2002). Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development, 129: 2297–2306.

    Google Scholar 

  34. Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot- Rechenmann, C. and Bennett, M.J. (1999). AUX1 regulates root g:avitropism in Arabidopsis by facilitating uptake within root apical tissue. EMBO J., 18: 2066–2073.

    Article  Google Scholar 

  35. Mayer, U Buttner, G. and Jurgens, G. (1993). Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development, 117: 149–162.

    Google Scholar 

  36. Mayer, U., Torres-Ruiz, R.A., Beleth, T., Misera, S. and Jurgens, G. (1991). Mutations affecting body organization in the Arabidopsis embryo. Nature, 353: 402–407.

    Article  Google Scholar 

  37. McConnell, R.J., Emery, J., Eshed, Y., Bao, N., Bowman, J. and Barton, K.M. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 411: 709–713.

    Article  Google Scholar 

  38. Meinke, D.W. and Sussex, I.M. (1979). Embryo-lethal mutants of Arabidopsis thaliana. A model system for genetic analysis of plant embryo development. Dev Biol., 72: 50–61.

    Article  Google Scholar 

  39. Meinke, D.W. and Sussex, I.M. (1979). Isolation and characterization of six embryo-lethal mutants of Arabidopsis thaliana. Der Biol., 72: 62–72.

    Google Scholar 

  40. Nakajima, K., Sena, G.: Nawy,’T. and Benfey, P.N. (2001). Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 413: 307–311.

    Google Scholar 

  41. Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. (1991). Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 3: 677–684.

    Google Scholar 

  42. Otsuga, D., DeGuzman, B., Prigge, M.J., Drews, G.N. and Clark, S.E. (2001). REVOL UA regulates meristem initiation at lateral positions. Plant J:, 25: 223–236.

    Google Scholar 

  43. Ouellet, F., Overvoorde, P.J. and Theologis, A. (2001). IAAAXR. Biochemical insight into an auxin mutant phenotype. Plant Cell, 13: 829–842.

    Google Scholar 

  44. Palme, K. and Gasweiler, L. (1999). PIN-pointing the molecular basis of auxin transport. Curr. Opin. Plant Biol., 2: 375–381.

    Article  Google Scholar 

  45. Peyroche, A., Paris, S. and Jackson, C.L. (1996). Nucleotide exchange on ARE mediated by yeast Geal protein. Nature, 384: 479–481.

    Article  Google Scholar 

  46. Ramos, J.A., Zenser, N., Leyser, O. and Canis, J. (2001). Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain U and is proteasome dependent. Plant Cell,13: 2349–2360.

    Google Scholar 

  47. Sawa, S., Watanabe, K., Goto, K., Kanaya, E., Morita, E.H. and Okada, K. (1999). FILAMENTOUS FLOWER, a meristem and organ identity gene of Ara bidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev., 13: 1079–1088.

    Article  Google Scholar 

  48. Scheres, B., Di, Laurenzio, L., Willemsen, V., Hauser, M.T., Janmaat, K., Weis- Seek, P. and Benfey, P.N. (1995). Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development, 121: 53–62.

    Google Scholar 

  49. Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C.,’ Dangl, J., Schmidt, J. and Jungens, G. (2000). FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis: Genes Dev., 14: 1471–1484.

    Google Scholar 

  50. Shevell, D.E., Leu, W.M., Gillmor, C.S., Xia, G., Feldmann, K.A. and Chua, N.-H. (1994). E?rIB30is essential for normal cell division, cell expansion and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell, 77: 1051–1062.

    Article  Google Scholar 

  51. Siegfried, K:R., Eshed, Y., Baum, S.F.,,Otsuga, D., Drews, G.N. and Bowman, J.L. (1999). Members of the YBBY gene family specify abaxial cell fate in Arabidopsis. Development,126: 4117–4128.

    Google Scholar 

  52. Souter, M., Topping, J., Pullen, M., Friml, J., Palme, K., Hackett, R., Grierson, D. and Lindsey, K. (2002). The hydral mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell. 14: 1017–1031.

    Article  Google Scholar 

  53. Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Galweiler, L., Palme, K. and Jurgens, G. (1999). Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARE GEF. Science, 286: 316–318.

    Article  Google Scholar 

  54. Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K. and Bennett, M. (2001). Localization of the auxin permease AUXI suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev, 15: 2648–2653.

    Article  Google Scholar 

  55. Takada, S., Hibara, K., Ishida, T. and Tasaka, M. (2001). The CUP-SHAPED COTYLEDON) gene of Arabidopsis regulates shoot apical meristem formation. Development, 128: 1127–1135.

    Google Scholar 

  56. Ulmasov, T., Hagen, G. and Guilfoyle, T.J. (1997). ARF1, a transcription factor that binds to auxin response elements. Science, 276: 1865–1868.

    Article  Google Scholar 

  57. Ulmasov, T., Hagen, G. and Guilfoyle, T.J. (1999). Dimerization and DNA binding of auxin response factors. Plant J., 19: 309–319.

    Article  Google Scholar 

  58. Ulmasov, T., Murfett., J., Hagen, G. and Guilfoyle, T.J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell,, 9: 1963–1971.

    Google Scholar 

  59. Worley, C.K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. and Callis, J. (2000). Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J., 21: 553–562.

    Article  Google Scholar 

  60. Wysocka-Diller; J.W,, Helariutta; Y., Fukaki, H., Lalamy, J.E. and:Benfey. P.N. (2000). Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development, 127: 595–603.

    Google Scholar 

  61. Zenser, N., Ellsmore, A., Leasure, C. and Callis, J. (2001). Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl. Acad. Sci., 98: 11795–11800.

    Article  Google Scholar 

  62. Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D. Weigel, D. and Chory, J. (2001). A role for Ravin monooxygenase-like enzymes in auxin biosynthesis: Science, 291: 306–309.

    Article  Google Scholar 

  63. Zhong, R. and Ye, Z.H. (2001). Alteration of auxin polar transport in the Ara-bidopsis ifîl mutants. Plant Physiol., 126: 549–563.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Furutani, M., Aida, M., Tasaka, M. (2003). Pattern Formation during Dicotyledonous Plant Embryogenesis. In: Sekimura, T., Noji, S., Ueno, N., Maini, P.K. (eds) Morphogenesis and Pattern Formation in Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65958-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65958-7_12

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65960-0

  • Online ISBN: 978-4-431-65958-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics