Skip to main content

The Role of Phosphoinositide Hydrolysis in the Regulation of Cardiac Function via α-Adrenergic, Endothelin, and Angiotensin Receptors

  • Conference paper

Summary

Activation of myocardial a,-adrenergic, endothelin, and angiotensin receptors leads to acceleration of the hydrolysis of phosphoinositide, with resultant production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In spite of the wide range of species-dependent variation in the induction of the positive inotropic effect among mammalian species, there is an excellent correlation between the extent of acceleration of the hydrolysis of phosphoinositide and the positive inotropic effect under most experimental conditions after the administration of the respective agonists in the rabbit ventricular muscle. Moreover, the positive inotropic effect of the agonists of these receptors is consistently associated with a negative lusitropic effect and an increase in the sensitivity of myofilaments to Ca2+ ions. Furthermore, the positive inotropic effect can be selectively inhibited by inhibitors of protein kinase C such as staurosporine, NA 0345, and H-7, with little associated effect on the hydrolysis of phosphoinositide and the positive inotropic effect of isoproterenol and Bay K 8644 in the rabbit ventricular muscle. An activator of protein kinase C, phorbol 12,13-dibutyrate (PDBu), likewise selectively inhibited the positive inotropic effect and acceleration of phosphoinositide hydrolysis induced by these receptor agonists in the rabbit. By contrast, the regulation of action potentials and membrane ionic currents induced by these receptor agonists shows quite a wide range of variation in rabbit ventricular cardiomyocytes. α-Adrenoceptor agonists cause monophasic prolongation of the action potential, while endothelin-1 and angiotensin II elicit a biphasic change in the duration of action potential, namely a transient abbreviation that is followed by a long-lasting prolongation. Endothelin-1 also modifies the calcium current (ICa,) in a biphasic manner, while α-agonists scarcely affected ICa, and angiotensin II has a weak and variable effect on ICa. The potassium current, IKl, is suppressed by α-agonists, whereas it is transiently activated by angiotensin II. Angiotensin II activates a slowly developing Cl- current, while endothelin-1 does not induce such a current. These results suggest that the products of hydrolysis of phosphoinositide might play a crucial role as intracellular messengers in the regulation of cardiac function that is induced upon activation of angiotensin, endothelin, and α-adrenergic receptors in the rabbit ventricular myocardium. The signal-transduction process subsequent to cceleration of the hydrolysis of phosphoinositide might, however, show a wide range of variable types of coupling to regulatory proteins in the heart. Alternatively, additional regulatory processes that are specifically triggered by activation of the respective receptors might operate in parallel with the acceleration of phosphoinositide hydrolysis. Thus, the activation of receptors that belong to this class could be involved in diverse types of physiological as well as pathophysiological regulation of myocardial cell function in the mammalian heart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endoh M (1991) Myocardial a-adrenoceptors: multiplicity of subcellular coupling processes. Asia Pac J Pharmacol 6: 171–186

    Google Scholar 

  2. Endoh M (1991) Signal transduction of myocardial a,-adrenoceptors: regulation of ion channels, intracellular calcium, and force of contraction—a review. J Appl Cardiol 6: 379–399

    Google Scholar 

  3. Endoh M (1995) The effects of various drugs on the myocardial inotropic responses. Gen Pharmacol 26: 1–31

    Article  PubMed  CAS  Google Scholar 

  4. Fedida D, Braun AP, Giles WR (1993) a,-Adrenoceptors in myocardium: functional aspects and transmembrane signaling mechanisms. Physiol Rev 73: 469–487

    Google Scholar 

  5. Terzic A, Pucéat M, Vassort G, Vogel SM (1993) Cardiac a,-adrenoceptors: an overview. Pharmacol Rev 45: 147–175

    PubMed  CAS  Google Scholar 

  6. Karwatowska-Prokopczuk E, Wennmalm A (1990) Effects of endothelin on coronary flow, mechanical performance, oxygen uptake, and formation of purines and on outflow of prostacyclin in the isolated rabbit heart. Circ Res 66: 46–54

    Article  PubMed  CAS  Google Scholar 

  7. Endoh M, Hiramoto T, Ishihata A, Takanashi M, Inui J (1991) Myocardial a,adrenoceptors mediate positive inotropic effect and changes in phosphatidylinositol metabolism. Species differences in receptor distribution and the intracellular coupling process in mammalian ventricular myocardium. Circ Res 68: 1179–1190

    Google Scholar 

  8. Yang H-T, Endoh M (1994) Dissociation of the positive inotropic effect of methoxamine from the hydrolysis of phosphoinositide in rabbit ventricular myocardium: a comparison with the effects of phenylephrine and the subtype of the alpha-1 adrenoceptor involved. J Pharmacol Exp Ther 269: 732–742

    PubMed  CAS  Google Scholar 

  9. Takanashi M, Endoh M (1991) Characterization of positive inotropic effect of endothelin on mammalian ventricular myocardium. Am J Physiol 261: H611 - H619

    PubMed  CAS  Google Scholar 

  10. Takanashi M, Endoh M (1992) Concentration-and time-dependence of phosphoinositide hydrolysis induced by endothelin-1 in relation to the positive isotropic effect in the rabbit ventricular myocardium. J Pharmacol Exp Ther 262: 11891194

    Google Scholar 

  11. Kasai H, Takanashi M, Takasaki C, Endoh M (1994) Pharmacological properties of endothelin receptor subtypes mediating positive inotropic effects in rabbit heart. Am J Physiol 266: H2220 - H2228

    PubMed  CAS  Google Scholar 

  12. Ishihata A, Endoh M (1993) Pharmacological characteristics of the positive inotropic effect of angiotensin II in the rabbit ventricular myocardium. Br J Pharmacol 108: 9991005

    Google Scholar 

  13. Takanashi M, Norota I, Endoh M (1991) Potent inhibitory action of chlorethylclonidine on the positive inotropic effect and phosphoinositide hydrolysis mediated via myocardial alpha,-adrenoceptors in the rabbit ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol 343: 669–673

    PubMed  CAS  Google Scholar 

  14. Endoh M, Takanashi M, Norota I (1992) Effect of (+)-niguldipine on myocardial a,adrenoceptors in the rabbit. Eur J Pharmacol 223: 143–151

    Article  PubMed  CAS  Google Scholar 

  15. Kohi M, Yang H-T, Endoh M (1993) Myocardial a,-adrenoceptor subtypes in rabbit: differentiation by a selective antagonist, HV723. Eur J Pharmacol 250: 95–101

    Article  PubMed  CAS  Google Scholar 

  16. Hilal-Dandan R, Urasawa K, Brunton LL (1992) Endothelin inhibits adenylate cyclase and stimulates phosphoinositide hydrolysis in adult cardiac myocytes. J Biol Chem 267: 10620–10624

    PubMed  CAS  Google Scholar 

  17. Hilal-Dandan R, Merck DT, Lujan JP, Brunton LL (1994) Coupling of the type A endothelin receptor to multiple responses in adult rat cardiac myocytes. Mol Pharmacol 45: 1183–1190

    PubMed  CAS  Google Scholar 

  18. Kohomoto 0, Ikenouchi H, Hirata Y, Momomura S, Serizawa T, Barry WH (1993) Variable effects of endothelin-1 on [Caz`]; transients, pH;, and contraction in ventricular myocytes. Am J Physiol 265: H793 - H800

    Google Scholar 

  19. James AF, Xie L-H, Fujitani Y, Hayashi S, Horie M (1994) Inhibition of the cardiac protein kinase A-dependent chloride conductance by endothelin-1. Nature 370: 297300

    Google Scholar 

  20. Ono K, Tsujimoto G, Sakamoto A, Eto K, Masaki T, Ozaki Y, Satake M (1994) Endothelin-A receptor mediates cardiac inhibition by regulating calcium and potassium currents. Nature 370: 301–304

    Article  PubMed  CAS  Google Scholar 

  21. Endoh M, Takanashi M, Norota I (1992) Effects of vasopressin on phosphoinositide hydrolysis and myocardial contractility. Eur J Pharmacol 218: 355–358

    Article  PubMed  CAS  Google Scholar 

  22. Baker KM, Singer HA (1988) Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol phosphate production. Circ Res 62: 896–904

    Article  PubMed  CAS  Google Scholar 

  23. Baker KM, Aceto JA (1989) Characterization of avian angiotensin II cardiac receptors: coupling to mechanical activity and phosphoinositide metabolism. J Mol Cell Cardiol 21: 375–382

    Article  PubMed  CAS  Google Scholar 

  24. Endoh M, Norota I, Takanashi M, Kasai H (1993) Inotropic effects of staurosporine, NA 0345 and H-7, protein kinase C inhibitors, on rabbit ventricular myocardium: selective inhibition of the positive inotropic effect mediated by a,-adrenoceptors. Jpn J Pharmacol 63: 17–26

    Article  PubMed  CAS  Google Scholar 

  25. Endoh M, Otomo J, Norota I (1990) Phorbol-12,13-dibutyrate antagonizes the a,adrenoceptor-mediated positive inotropic effect in the rabbit ventricular myocardium. Br J Clin Pharmacol 30: 115S - 117S

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Endoh M, Otomo J, Norota I, Takanashi M (1993) Selective inhibition by phorbol 12,13-dibutyrate of the a,-receptor-mediated positive inotropic effect. Int J Cardiol 40: 191–201

    Article  PubMed  CAS  Google Scholar 

  27. Endoh M, Takanashi M (1991) Differential inhibitory action of phorbol-12,13dibutyrate on the positive inotropic effect of endothelin-1 and Bay K 8644 in the isolated rabbit papillary muscle. J Cardiovasc Pharmacol 17 [Suppl VII]: S165 - S168

    Article  PubMed  CAS  Google Scholar 

  28. Otani H, Otani H, Das DK (1988) a,-Adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 62: 8–17

    Google Scholar 

  29. Jones LG, Rozich JD, Tsutsui H, Cooper G IV (1992) Endothelin stimulates multiple responses in isolated adult ventricular cardiac myocytes. Am J Physiol 263:H1447-H 1454

    Google Scholar 

  30. Gu XH, Ou RC, Casley DJ, Daly MJ, Nayler WG (1992) Effect of age on endothelin-1 binding sites in rat cardiac ventricular membranes. J Cardiovasc Pharmacol 19: 764769

    Google Scholar 

  31. Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR (1990) Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 265: 20555–20562

    Google Scholar 

  32. Ito H, Hirata Y, Hiroe M, Tsujino M, Adachi S, Takamoto T, Nitta M, Taniguchi K, Marumo F (1991) Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res 69: 209215

    Google Scholar 

  33. Endoh M (1986) Regulation of myocardial contractility via adrenoceptors: differential mechanisms of a-and (3-adrenoceptor-mediated actions. In: Grobecker H, Philippu A, Starke K (eds) New aspects of the role of adrenoceptors in the cardiovascular system. Springer, Berlin Heidelberg, pp 78–105

    Chapter  Google Scholar 

  34. Endoh M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca“ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca” mediated through ct-and 3-adrenoceptors. Circ Res 62: 247–265

    Article  PubMed  CAS  Google Scholar 

  35. Wang JX, Paik G, Morgan JP (1991) Endothelin-1 enhances myofilament Ca“-responsiveness in aequorin-loaded ferret myocardium. Circ Res 69: 582–589

    Article  PubMed  CAS  Google Scholar 

  36. Keely RA, Eid H, Krämer BK, O’Neil M, Liang BT, Reers M, Smith TW (1990) Endothelin enhances the contractile responsiveness of adult rat ventricular myocytes to calcium by a pertussis toxin-sensitive pathway. J Clin Invest 86: 1164–1171

    Article  Google Scholar 

  37. Krämer BK, Smith TW, Keely RA (1991) Endothelin and increased contractility in adult rat ventricular myocytes: role of intracellular alkalosis induced by activation of the protein kinase C-dependent N’-H` exchanger. Circ Res 68: 269–279

    Article  PubMed  Google Scholar 

  38. Ikenouchi H, Barry WH, Bridge JHB, Weinberg EO, Apstein CS, Lorell BH (1994) Effects of angiotensin II on intracellular Ca“ and pH in isolated beating rabbit hearts and myocytes loaded with the indicator indo-l. J Physiol (Lond) 480: 203–215

    CAS  Google Scholar 

  39. Terzic A, Pucéat M, Clément O, Scamps F, Vassort G (1992) a,-Adrenergic effects on intracellular pH and calcium and on myofilaments in single rat cardiac cells. J Physiol (Lond) 447: 275–292

    Google Scholar 

  40. Gambassi G, Spurgeon HA, Lakatta EG, Blank PS, Capogrossi MC (1992) Different effects of a-and (3-adrenergic stimulation on cytosolic pH and myofilament responsiveness to Ca“ in cardiac myocytes. Circ Res 71: 870–882

    Article  PubMed  CAS  Google Scholar 

  41. Katoh N, Wise BC, Kuo JF (1983) Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca“-dependent protein kinase. Biochem J 209: 189–195

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Noland TA Jr, Raynor RL, Kuo JF (1989) Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J Biol Chem 264: 20778–20785

    PubMed  CAS  Google Scholar 

  43. Edes I, Kranias EG (1990) Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts. Circ Res 67: 394–400

    Article  PubMed  CAS  Google Scholar 

  44. Leatherman GF, Kim D, Smith TW (1987) Effect of phorbol esters on contractile state and calcium flux in cultured chick heart cells. Am J Physiol 253: H205 - H209

    PubMed  CAS  Google Scholar 

  45. Yuan S, Sunahara FA, Sen AK (1987) Tumor-promoting phorbol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ Res 61: 372–378

    Article  PubMed  CAS  Google Scholar 

  46. Dösemeci A, Dhallan RS, Cohen NM, Lederer WJ, Rogers TB (1988) Phorbol ester increases calcium current and simulates the effects of angiotensin II on cultured neonatal rat heart myocytes. Circ Res 62: 347–357

    Article  PubMed  Google Scholar 

  47. Capogrossi MC, Kaku T, Filburn CR, Pelto DJ, Hansford RG, Spurgeon HA, Lakatta EG (1990) Phorbol ester and dioctanoylglycerol stimulate membrane association of protein kinase C and have a negative inotropic effect mediated by changes in cytosolic Ca“ in adult rat cardiac myocytes. Circ Res 66: 1143–1155

    Article  PubMed  CAS  Google Scholar 

  48. Gwathmay JK, Hajjar RJ (1990) Effect of protein kinase C activation on sarcoplasmic reticulum function and apparent myofibrillar Ca-’ sensitivity in intact and skinned muscles from normal and diseased human myocardium. Circ Res 67: 744–752

    Article  Google Scholar 

  49. Teutsch I, Weible A, Siess M (1987) Differential inotropic and chronotropic effects of various protein kinase C activators on isolated guinea pig atria. Eur J Pharmacol 144: 363–367

    Article  PubMed  CAS  Google Scholar 

  50. MacLeod KT, Harding SE (1991) Effects of phorbol ester on contraction, intracellular pH and intracellular Ca“ in isolated mammalian ventricular myocytes. J Physiol (Lond) 444: 481–498

    CAS  Google Scholar 

  51. Endoh M, Shimizu T, Yanagisawa T (1978) Characterization of adrenoceptors mediating positive inotropic responses in the ventricular myocarium of the dog. Br J Pharmacol 64: 53–61

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Ishihata A, Endoh M (1995) Species-related differences in inotropic effects of angiotensin II in mammalian ventricular muscle: receptors, subtypes and phosphoinositide hyrolysis. Br J Pharmacol 114: 447–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Endoh M (1982) Adrenoceptors and the myocardial inotropic response: do alpha and beta receptor sites functionally coexist? In: Kalsner S (ed) Trends in autonomic pharmacology, vol 2. Urban and Schwarzenberg, Baltimore, pp 303–322

    Google Scholar 

  54. Gross G, Hanft G, Rugevics C (1988) 5-Methyl-urapidil discriminates between subtypes of the a,-adrenoceptor. Eur J Pharmacol 151: 333–335

    Google Scholar 

  55. Sallès J, Gascon S, Ivorra D, Badia A (1994) In vivo recovery of a,-adrenoceptors in rat myocardial tissue after alkylation with phenoxybenzamine. Eur J Pharmacol 266: 35–42

    Article  PubMed  Google Scholar 

  56. Endoh M, Takanashi M, Norota I (1992) Role of alpha„ adrenoceptor subtype in production of the positive inotropic effect mediated via myocardial alpha, adrenoceptors in the rabbit papillary muscle: influence of selective alpha, subtype antagonists WB 4101 and 5-methylurapidil. Naunyn Schiedebergs Arch Pharmacol 345: 578–585

    CAS  Google Scholar 

  57. Kohi M, Norota I, Takanashi M, Endoh M (1993) On the mechanism of action of the beta-1 partial agonist denopamine in regulation of myocardial contractility: effects on myocardial alpha adrenoceptors and intracellular Cam transients. J Pharmacol Exp Ther 265: 1292–1300

    PubMed  CAS  Google Scholar 

  58. Williamson AP, Seifen E, Lindemann JP, Kennedy RH (1994) Effects of WB4101 and chloroethylclonidine on the positive and negative inotropic actions of phenylephrine in rat cardiac muscle. J Pharmacol Exp Ther 268: 1174–1182

    PubMed  CAS  Google Scholar 

  59. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45: 205–251

    PubMed  CAS  Google Scholar 

  60. Freer RJ, Pappano AI, Peach MJ, Bing KT, McLean MJ, Vogel S, Sperelakis N (1976) Mechanism for the positive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res 39: 178–182

    Article  PubMed  CAS  Google Scholar 

  61. Kass RS, Blair ML (1981) Effects of angiotensin II on membrane current in cardiac Purkinje fibers. J Mol Cell Cardiol 13: 797–809

    Article  PubMed  CAS  Google Scholar 

  62. Rogers TB, Gaa ST, Allen IS (1986) Identification and characterization of functional angiotensin II receptors on cultured heart myocytes. J Pharmacol Exp Ther 236: 438444

    Google Scholar 

  63. Kem DC, Johnson EIM, Capponi AM, Chardonnens D, Lang U, Blondel B, Koshida H, Vallotton MB (1991) Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol 261: C77 - C85

    PubMed  CAS  Google Scholar 

  64. Moravec CS, Reynolds EE, Stewart RW, Bond M (1989) Endothelin is a positive inotropic agent in human and rat heart in vitro. Biochem Biophys Res Commun 159: 14–18

    Article  PubMed  CAS  Google Scholar 

  65. Chen S-A, Chang M-S, Chiang BN, Cheng K-K, Lin C-I (1991) Electromechanical effects of angiotensin in human atrial tissues. J Mol Cell Cardiol 23: 483–493

    Article  PubMed  CAS  Google Scholar 

  66. Meulemans AL, Andries LJ, Brutsaert DL (1990) Does endocardial endothelium mediate positive inotropic response to angiotensin I and angiotensin II? Circ Res 66: 15911601

    Google Scholar 

  67. Kobayashi M, Furukawa Y, Chiba S (1978) Positive chronotropic and inotropic effects of angiotensin II in the dog heart. Eur J Pharmacol 50: 17–25

    Article  PubMed  CAS  Google Scholar 

  68. Zhang J, Pfaffendorf M, van Zwieten PA (1993) Positive inotropic action of angiotensin II in the pithed rat. Naunyn Schmiedebergs Arch Pharmacol 347: 658–663

    Article  PubMed  CAS  Google Scholar 

  69. Feolde E, Vigne P, Frelin C (1993) Angiotensin AT, receptors mediate a positive inotropic effect of angiotensin II in guinea pig atria. Eur J Pharmacol 245: 63–66

    Article  PubMed  CAS  Google Scholar 

  70. Wright GB, Alexander RW, Ekstein LS, Gimborne MA Jr (1983) Characterization of the rabbit ventricular myocardial receptor for angiotensin II. Mol Pharmacol 24: 213–221

    PubMed  CAS  Google Scholar 

  71. Baker KM, Campanile CP, Trachte GJ, Peach MJ (1984) Identification and characterization of the rabbit angiotensin II myocardial receptor. Circ Res 54: 286–293

    Article  PubMed  CAS  Google Scholar 

  72. Bonnardeaux JL, Park WK, Regoli D (1977) Effects of angiotensins and catecholamines on the transmembrane potential and isometric force of rabbit isolated atria. Arch Int Pharmacodyn 229: 83–94

    PubMed  CAS  Google Scholar 

  73. Shah A, Cohen IS, Rosen MR (1988) Stimulation of cardiac alpha receptors increases Na/K pump current and decreases g, via a pertussis toxin-sensitive pathway. Biophys J 54:219–225 350 M. Endoh et al.

    Google Scholar 

  74. Zaza A, Kline RP, Rosen MR (1990) Effects of a-adrenergic stimulation on intracellular sodium activity and automaticity in canine Purkinje fibers. Circ Res 66: 416–426

    Article  PubMed  CAS  Google Scholar 

  75. Tohse N, Kameyama M, Irisawa H (1987) Intracellular Caz+ and protein kinase C modulate K* current in guinea pig heart cells. Am J Physiol 253: H1321 - H1324

    PubMed  CAS  Google Scholar 

  76. Kurachi Y, Ito H, Sugimoto T, Miki I, Ui M (1989) a-Adrenergic activation of the muscarinic K’ channel is mediated by arachidonic acid metabolites. Pflugers Arch 414: 102–104

    Google Scholar 

  77. Yang H-T, Norota I, Zhu Y, Endoh M (1996) Methoxamine-induced inhibition of the positive inotropic effect of endothelin via a,-adrenoceptors in the rabbit heart. Eur J Pharmacol (in press)

    Google Scholar 

  78. Iwakura K, Hori M, Watanabe Y, Kitabatake A, Cragoe EJ Jr, Yoshida H, Kamada T (1990) a,-Adrenoceptor stimulation increases intracellular pH and Caz+ in cardiomyocytes through Na*/H* and Na*/Ca“ exchange. Eur J Pharmacol 186: 29–40

    Google Scholar 

  79. Otani H, Otani H, Uriu T, Hara M, Inoue M, Omori K, Cragoe EJ Jr, Inagaki C (1990) Effects of inhibitors of protein kinase C and Na*/K+ exchange on a,-adrenoceptormediated inotropic responses in the rat left ventricular papillary muscle. Br J Pharmacol 100: 207–210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Pucéat M, Clément O, Lechene P, Pelosin JM, Ventura-Clapier R, Vassort G (1990) Neurohormonal control of calcium sensitivity of myofilaments in rat single cells. Circ Res 67: 517–524

    Article  PubMed  Google Scholar 

  81. Hartmann HA, Mazzocca NJ, Kleiman RB, Houser SR (1988) Effects of phenylephrine on calcium current and contractility of feline ventricular myocytes. Am J Physiol 255: H1173 - H1180

    PubMed  CAS  Google Scholar 

  82. Hescheler J, Nawrath H, Tang M, Trautwein W (1988) Adrenoceptor-mediated changes of excitation and contraction in ventricular heart muscle from guinea pigs and rabbits. J Physiol (Lond) 397: 657–670

    CAS  Google Scholar 

  83. Fedida D, Bouchard RA (1992) Mechanisms for the positive inotropic effect of a,adrenoceptor stimulation in rat cardiac myocytes. Circ Res 71: 673–688

    Article  PubMed  CAS  Google Scholar 

  84. Kushida H, Hiramoto T, Endoh M (1990) The preferential inhibition of a,- over [3adrenoceptor-mediated positive inotropic effect by organic calcium antagonists in the rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 341: 206–214

    PubMed  CAS  Google Scholar 

  85. Tohse N, Hattori Y, Nakaya H, Endou M, Kanno M (1990) Inability of endothelin to increase Cat+ current in guinea pig heart cells. Br J Pharmacol 99: 437–438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Lauer MR, Gunn MD, Clusin WT (1992) Endothelin activates voltage-dependent Caz+ current by a G protein-dependent mechanism in rabbit cardiac myocytes. J Physiol (Lond) 448: 729–747

    CAS  Google Scholar 

  87. Fedida D, Shimoni Y, Giles WR (1990) a-Adrenergic modulation of the transient outward current in rabbit atrial myocytes. J Physiol (Lond) 423: 257–277

    Google Scholar 

  88. Apkon M, Nerbonne JM (1988) a,-Adrenergic agonists selectively suppress voltage-dependent K* currents in rat ventricular myocytes. Proc Natl Acad Sci USA 85:87568760

    Google Scholar 

  89. Ravens U, Wang X-L, Wettwer E (1989) Alpha adrenoceptor stimulation reduces outward currents in rat ventricular myocytes. J Pharmacol Exp Ther 250: 364–370

    Google Scholar 

  90. Fedida D, Braun AP, Giles WR (1991) a,-Adrenoceptors reduce background K+ current in rabbit ventricular myocytes. J Physiol (Lond) 441: 673–684

    Google Scholar 

  91. Endoh M, Morita H, Kimura J (1993) Activation of chloride channel via AT, angiotensin receptors in rabbit ventricular myocytes. Circulation 88 [Suppl II] I - 31

    Google Scholar 

  92. Morita H, Kimura J, Endoh M (1995) Angiotensin II activation of a chloride current in rabbit cardiac myocytes. J Physiol (Lond) 483: 119–130

    CAS  Google Scholar 

  93. Habuchi Y, Tanaka H, Furukawa T, Tsujimura Y, Takahashi H, Yoshimura M (1992) Endothelin enhances delayed potassium current via phospholipase C in guinea pig ventricular myocytes. Am J Physiol 262: H345 - H354

    PubMed  CAS  Google Scholar 

  94. Ishii K, Numoki K, Murakoshi H, Taira N (1992) Cloning and modulation by endothelin-1 of rat cardiac K channel. Biochem Biophys Res Commun 184: 1484–1489

    Article  PubMed  CAS  Google Scholar 

  95. Kim D (1991) Endothelin activation of an inwardly rectifying K* current in atrial cells. Circ Res 69: 250–255

    Article  PubMed  CAS  Google Scholar 

  96. Shimoni Y, Banno H (1993) a-Adrenergic modulation of transient outward current in hyperthyroid rabbit myocytes. Am J Physiol 264: H74 - H77

    Google Scholar 

  97. Dirsken RT, Sheu SS (1990) Modulation of ventricular action potential by a,adrenoceptors and protein kinase C. Am J Physiol 258: H907 - H911

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Japan

About this paper

Cite this paper

Endoh, M., Morita, H., Kimura, J. (1996). The Role of Phosphoinositide Hydrolysis in the Regulation of Cardiac Function via α-Adrenergic, Endothelin, and Angiotensin Receptors. In: Endoh, M., Morad, M., Scholz, H., Iijima, T. (eds) Molecular and Cellular Mechanisms of Cardiovascular Regulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65952-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65952-5_25

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65954-9

  • Online ISBN: 978-4-431-65952-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics