Skip to main content

Uncoupling of the β2-Adrenoceptor Effect on Ca2+ Regulation and cAMP in Cardiac Cells

  • Conference paper
Molecular and Cellular Mechanisms of Cardiovascular Regulation

Summary

Studies in rat ventricular myocytes demonstrate that while both β1-adrenergic receptor stimulation (β1ARS) and β2AR stimulation (β2ARS) increase cyclic adenosine monophosphate (cAMP) to a similar extent, the effects of β2ARS on cytosolic Ca2+ (Cai) transient and contraction are largely dissociated from the cAMP increase. In canine ventricular myocytes, β2ARS augments the amplitude of ICa, Cai transient, and contraction without increasing cell cAMP. In rat cells, β2ARS by zinterol (ZINT) or by isoproterenol in the presence of the selective β1AR antagonist CGP 20712A increases contraction amplitude to about the same extent as β1ARS by norepinephrine (NE). While β1ARS has a potent effect to abbreviate the durations of the contraction and Cai transient, β2ARS has only a minor relaxation effect in rat cells. β2ARS does not result in phospholamban phosphorylation to the same extent in either rat or canine cells as does β1ARS. In addition, β1ARS, but not β2ARS, increases the diastolic Ca2+ level and evokes spontaneous Cai oscillations. β2ARS prolongs the action potential to a greater extent than does β1ARS. β1ARS and β2ARS also differ in their effects on ICa: whereas both increase the peak ICa amplitude to a similar extent, only β2ARS markedly prolongs the ICa inactivation time. A peptide inhibitor of protein kinase A abolishes β1ARS, but only partially affects β2ARS-induced increase in ICa in canine cells; the β2AR effect to increase ICa is abolished by a G protein inhibitor, GDPβS. Additionally, the Gs-coupled β2AR activates a pertussis toxin (PTX)-sensitive G protein pathway that leads to inhibition of its effects. This provides a mechanism to protect the heart from Ca2+ overload and arrhythmias during the response in stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xiao R-P, Lakatta EG (1993) β,-adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca“, and Caz+ current in single rat ventricular cells. Circ Res 73: 286–300

    Article  PubMed  CAS  Google Scholar 

  2. Saito K, Torda T, Potter WZ, Saavedra JM (1989) Characterization of β,- and β2adrenoceptor subtypes in the rat sinoatrial node and stellate ganglia by quantitative autoradiography. Neurosci Lett 96: 35–41

    Article  PubMed  CAS  Google Scholar 

  3. Waelbroeck M, Taton G, Delhaye M, Chatelain P, Camus JC, Pochet R, Leclerc JL, DeSmet JM, Robberecht P, Christopher J (1983) The human heart beta-adrenergic receptors: II. Coupling of beta2-adrenergic receptors with the adenylate cyclase system. Mol Pharmacol 24: 174–182

    PubMed  CAS  Google Scholar 

  4. Cerbai E, Masini I, Mugelli A (1990) Electrophysiological characterization of cardiac (3,-adrenoceptors in sheep Purkinje fibers. J Mol Cell Cardiol 22: 859–870

    Article  PubMed  CAS  Google Scholar 

  5. Brodde O-E (1988) The functional importance of beta, and beta2 adrenoceptors in the human heart. Am J Cardiol 62: 24C - 29C

    Article  PubMed  CAS  Google Scholar 

  6. Motomura S, Zerkowski H-R, Daul A, Brodde O-E (1990) On the physiologic role of beta-2 adrenoceptors in the human heart: in vitro and in vivo studies. Am Heart J 119: 608–619

    Article  PubMed  CAS  Google Scholar 

  7. Ask JA, Stene-Larsen G, Helle KB, Resch F (1985) Functional β,- and β2-adrenoceptors in the human myocardium. Acta Physiol Scand 123: 81–88

    Article  PubMed  CAS  Google Scholar 

  8. del Monte F, Kaumann AJ, Pool-Wilson PA, Wynne DG, Pepper J, Harding SE (1993) Coexistence of functioning 13,- and 32-adrenoceptors in single myocytes from human ventricle. Circulation 88: 845–863

    Google Scholar 

  9. Dohlman HG, Caron MG, Lefkowitz RL (1991) Model systems for the study of seventransmembrane-segment receptors. Annu Rev Biochem 60: 653–688

    Article  PubMed  CAS  Google Scholar 

  10. Strader CD, Sigal IS, Dixon RAF (1989) Structural basis of (3-adrenergic receptor function. FASEB J 3: 1825–1832

    PubMed  CAS  Google Scholar 

  11. O’Dowd BF, Hantowich M, Regan JW, Leader WM, Caron MC, Lefkowitz RJ (1988) Site-directed mutagenesis of the cytoplasmic domains of the human β2-adrenergic receptor. J Biol Chem 263: 15985–15992

    PubMed  Google Scholar 

  12. Frielle T, Daniel KW, Caron MG, Lefkowitz RJ (1988) Structural basis of β-adrenergic receptor subtype specificity studied with chimeric β, β,-adrenergic receptors. Proc Natl Acad Sci USA 85: 9494–9498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Xiao R-P, Hohl C, Altschuld R, Jones L, Livingston B, Ziman B, Tantini B, Lakatta EG (1994) (32-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca“ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 269: 19151–19156

    PubMed  CAS  Google Scholar 

  14. Lefkowitz RJ (1975) Heterogeneity of adenylate cyclase-coupled 3-adrenergic receptors. Biochem Pharmacol 24: 583–590

    Article  PubMed  CAS  Google Scholar 

  15. Lands AM, Arnold A, McAuliff JP, Ludeuena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214: 597–598

    Article  PubMed  CAS  Google Scholar 

  16. Ikezono K, Michel MC, Zerkowski H-R, Beckeringh JJ, Brodde O-E (1987) The role of cyclic AMP in the positive inotropic effect mediated by beta 1- and beta 2adrenoceptors in isolated human right atrium. Naunyn Schmiedebergs Arch Pharmacol 335: 561–566

    PubMed  CAS  Google Scholar 

  17. Dooley DJ, Bittiger H, Reymann NC (1986) CGP 20712 A: a useful tool for quantitating β,- and β1-adrenoceptors. Eur J Pharmacol 130: 137–139

    Article  PubMed  CAS  Google Scholar 

  18. Emorine LJ, Marullo S, Briend-Sutren M-M, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human β-adrenergic receptor. Science 245: 1118–1121

    Article  PubMed  CAS  Google Scholar 

  19. Kaumann AJ (1989) Is there a third hear P-adrenoceptor? Trends Pharmacol Sci 10: 316–320

    Article  PubMed  CAS  Google Scholar 

  20. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R (1989) β,- and β,adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 35: 295–303

    PubMed  CAS  Google Scholar 

  21. Minneman KP, Hegstrand LR, Molinoff PB (1979) The pharmacological specificity of β,- and β2-adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol 16: 21–33

    PubMed  CAS  Google Scholar 

  22. O’Donnell SR, Wanstall JC (1989) Evidence that ICI 118,551 is a potent, highly beta,-selective adrenoceptor antagonist and can be used to characterize beta-adrenoceptor populations in tissues. Life Sci 27: 671–677

    Article  Google Scholar 

  23. Spurgeon HA, duBell WH, Stern MD, Ziman BD, Silverman HS, Capogrossi MC, Talo A, Lakatta EG (1992) Cytosolic calcium and myofilaments in single rat cardiac myocytes achieve a dynamic equilibrium during twitch relaxation. J Physiol (Lond) 447: 83–102

    CAS  Google Scholar 

  24. January CT, Fozzard HA (1988) Delayed afterdepolarization in heart muscle: Mechanisms and relevance. Pharmacol Rev 40: 219–227

    PubMed  CAS  Google Scholar 

  25. Capogrossi MC, Kort AA, Spurgeon HA, Lakatta EG (1986) Single adult rabbit and rat cardiac myocytes retain the Cat’- and species-dependent systolic and diastolic contractile properties of the intact muscle. J Gen Physiol 88: 589–613

    Article  PubMed  CAS  Google Scholar 

  26. Parrat JR, Wainright CL, Fagbemi O (1988) Effect of dopexamine hydrochloride in the early stage of experimental myocardial infarction and comparison with dopamine and dobutamine. Am J Cardiol 62: 18C - 23C

    Article  Google Scholar 

  27. Aass H, Skomedal T, Osnes J-B (1988) Increase of cyclic AMP in subcellular fractions of rat heart muscle after 13-adrenergic stimulation: prenalterol and isoprenaline caused different distribution of bound cyclic AMP. J Mol Cell Cardiol 20: 847–860

    Article  PubMed  CAS  Google Scholar 

  28. Hohl CM, Li Q (1991) Compartmentation of cAMP in adult canine ventricular myocytes: relation to single-cell free Ca“ transient. Circ Res 69: 1369–1379

    Article  PubMed  CAS  Google Scholar 

  29. Wegener AD, Simmerman HKB, Lindemann JP, Jones LR (1989) Phospholamban phosphorylation in intact ventricles: phosphorylation of serine 16 and threonine 17 in response to β-adrenergic stimulation. J Biol Chem 264: 11468–11474

    PubMed  CAS  Google Scholar 

  30. Wegener AD, Jones LR (1984) Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gel. J Biol Chem 259: 1834–1841

    PubMed  CAS  Google Scholar 

  31. Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM (1983) β-adrenergic stimulation of phospholamban phosphorylation and Ca’--ATPase activity in guinea pig ventricles. J Biol Chem 258: 464–471

    Google Scholar 

  32. Sham JSK, Jones LR, Morad M (1991) Phospholamban mediates the β-adrenergicenhanced Ca=’ uptake in mammalian ventricular myocytes. Am J Physiol 261:H1344–H1349

    PubMed  CAS  Google Scholar 

  33. Lemoine H, Kaumann AJ (1991) Regional differences of G3,- and β,-adrenoceptormediated functions in feline heart: a (32-adrenoceptor-mediated positive inotropic effect possibly unrelated to cyclic AMP. Naunyn Schmiedebergs Arch Pharmacol 344: 56–69

    PubMed  CAS  Google Scholar 

  34. Borea PA, Amerini S, Masini I, Cerbai E, Ledda F, Mantelli L, Varani K, Mugelli A (1992)13,- and (3,-adrenoceptors in sheep cardiac ventricular muscle. J Mol Cell Cardiol 24: 753–764

    Article  PubMed  CAS  Google Scholar 

  35. Altschuld RA, McCune SA, Hamlin RL, Phillips RM, Hensley J, Castillo LC, Starling RC, Hohl CM (1994) Cardiac myocytes and heart failure. J Mol Cell Cardiol 26:CXLV

    Google Scholar 

  36. Altschuld RA, Starling RC, Hamlin RL, Billman GE, Hensley J, Castillo L, Fertel RH, Hohl CM, Robitaille P-ML, Jones LR, Xiao R-P, Lakatta EG (1995) Response of failing canine and human heart cells to β2-adrenergic stimulation. Circulation 92: 1612–1618

    Article  PubMed  CAS  Google Scholar 

  37. Bassani JWM, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476 (2): 279–293

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Bassani RA, Bassani JWM, Bers DM (1994) Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems. J Physiol 476 (2): 295–308

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Xiao R-P, Hohl CM, Ji X, Ziman BD, Altschuld RA, Lakatta EG (1994) Adenosine antagonizes β2-adrenoceptor stimulated increases in the Ca; transient and contraction in canine heart cells via a cAMP-independent mechanisms. Circulation 90: 1–414

    Article  Google Scholar 

  40. Ventura C, Spurgeon H, Lakatta EG, Guarnieri C, Capogrossi MC (1992) x and 8 opioid receptor stimulation affects cardiac myocyte function and Ca“ release from an intracellular pool in myocytes and neurons. Circ Res 70: 66–81

    Article  PubMed  CAS  Google Scholar 

  41. Sakai M, Danziger RS, Xiao R-P, Spurgeon H, Lakatta EG (1992) Contractile response of individual ventricular cardiac myocytes to norepinephrine declined with senescence. Am J Physiol 262: H184 - H189

    PubMed  CAS  Google Scholar 

  42. Negishi M, Namba T, Sugimoto Y, Irie A, Katada T, Narumiya S, Ichikawa A (1993) Opposite coupling of prostaglanding E receptor EP,c with G, and Go. J Biol Chem 268: 26067–26070

    PubMed  CAS  Google Scholar 

  43. Brechler V, Pavoine C, Hanf R, Garbarz E, Fischmeister R, Pecker F (1992) Inhibition by glucagon of the cGMP-inhibited low-Km cAMP phosphodiesterase in heart is mediated by a pertussis toxin-sensitive G-protein. J Biol Chem 267: 15496–15501

    PubMed  CAS  Google Scholar 

  44. Milligan G (1993) Mechanisms of multifunctional signalling by G protein-linked receptors. Trends Pharmacol Sci 14: 239–244

    Article  PubMed  CAS  Google Scholar 

  45. Xiao R-P, Ji X, Lakatta EG (1995) Functional coupling of β2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 47: 322–329

    PubMed  CAS  Google Scholar 

  46. Bean BP, Nowycky MC, Tsein RW (1984) (3-Adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307: 371–375

    Article  PubMed  CAS  Google Scholar 

  47. Spurgeon HA, Stern MD, Baartz G, Raffaeli S, Hansford RG, Talo A, Lakatta EG, Capogrossi MC (1990) Simultaneous measurements of Ca“, contraction, and potential in cardiac myocytes. Am J Physiol 258: H574 - H586

    PubMed  CAS  Google Scholar 

  48. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Japan

About this paper

Cite this paper

Xiao, RP., Lakatta, E.G. (1996). Uncoupling of the β2-Adrenoceptor Effect on Ca2+ Regulation and cAMP in Cardiac Cells. In: Endoh, M., Morad, M., Scholz, H., Iijima, T. (eds) Molecular and Cellular Mechanisms of Cardiovascular Regulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65952-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65952-5_23

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65954-9

  • Online ISBN: 978-4-431-65952-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics